
Synthesis and Verification of Algorithms

School of Computer Science, Peking University

Yican Sun

(1) Designing algorithms requires human insight
(2) Implementing algorithms is error-prone

Algorithm is Important but Hard

e.g. Knapsack

Enumerative
Search

Easy, 5 Lines

Dynamic
Programming

Hard, 20+ Lines

vs.

Overlapping Subproblem
Optimal Substructure

Algorithm Synthesis

How to Synthesize Algorithms?

LLM Approach
Procedure
• Modify ‘max segment sum’
• LLM produces incorrect answers

Conclusion
• LLM ‘memorizes’ problems
• Slight modification stumps LLM

Deductive Approach

• Rewriting-based framework
• Design rules problem by problem
• Semi-automated

Inductive Approach: State of the art

Try each program from small to big

• Successful in D&C (like) algorithm
• Widely open for other algorithms
• Synthesis result is not guaranteed to be 

correct

Q1: Improve Inductive Algorithm Synthesizers

SynMem: Synthesize Dynamic Programming

MiniZinc: Encode combinatorial problems by 
variables, constraints and optimization function.

Challenges
• Scalability Challenge: Dynamic Programming programs are too large!
• Efficiency Challenge: Purely enumeration cannot guarantee efficiency.

Solution: Template-based approach

How to Design the Template?

Why Template works?
• Scalability Challenge: Most part of codes is fixed. 
• Efficiency Challenge: Reduce to optimization.

Q2: Verify the Synthesis Result in Practice

Simplified case: algorithm synthesis from Brute-force

Proving Equivalence Between Functional Programs
Basic Framework: Induction + Lemma

Lemma Synthesis
• Lack of Systematic study, wasting time in trying useless lemmas
• Enumerate lemmas by Heuristics

• Enumerate lemmas from small to large
• Rank lemmas by text similarity
• Predict lemmas via machine-learning

Directed Lemma Synthesis: Transform goals into a induction-friendly form


