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Programming by example (PBE) is an important subproblem of program synthesis, and PBE techniques have

been applied to many domains. Though many techniques for accelerating PBE systems have been explored,

the scalability remains one of the main challenges: There is still a gap between the performances of state-of-

the-art synthesizers and the industrial requirement. To further speed up solving PBE tasks, in this paper, we

propose a novel PBE framework MaxFlash. MaxFlash uses a model based on structural probability, named

topdown prediction models, to guide a search based on dynamic programming, such that the search will focus

on subproblems that form probable programs, and avoid improbable programs. Our evaluation shows that

MaxFlash achieves ×4.107 − ×2080 speed-ups against state-of-the-art solvers on 244 real-world tasks.

CCS Concepts: • Software and its engineering→ Software notations and tools;General programming
languages.

Additional Key Words and Phrases: Programming by Example, Dynamic Programming, Probabilistic Model

ACM Reference Format:
Ruyi Ji, Yican Sun, Yingfei Xiong, and Zhenjiang Hu. 2020. Guiding Dynamic Programing via Structural

Probability for Accelerating Programming by Example. Proc. ACM Program. Lang. 4, OOPSLA, Article 224
(November 2020), 29 pages. https://doi.org/10.1145/3428292

1 INTRODUCTION
Programming by example (PBE) is an important subproblem of program synthesis where the

synthesis system is required to learn a program from input-output examples. PBE problem is

important because (1) many practical synthesis problems are instances of PBE, and (2) the general

synthesis problem of synthesizing a program from a logic specification can be converted into PBE

by CEGIS framework [Solar-Lezama et al. 2006]. While the studies of building efficient PBE systems

have been proceeding for four decades [Shaw et al. 1975], there is a surge of interest in applying

PBE techniques to different domains in the past decade, such as string manipulation [Barowy et al.
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2015; Gulwani 2011], data wrangling [Chen et al. 2019; Feng et al. 2017; Yaghmazadeh et al. 2016],

SQL queries [Wang et al. 2017; Zhang and Sun 2013].

Despite many existing applications, scalability remains one of the main challenges to apply

PBE techniques. As summarized by Polozov and Gulwani [2016], many PBE systems are interac-

tive systems, and a user-interacting PBE system of industrial quality should respond within 500
milliseconds. The state-of-the-art solvers fail to meet this requirement on many tasks. As will

be shown later, the best solver in SyGuS competition 2019 only solves 123 out of 205 real-world
string-manipulation tasks within 500ms in our evaluation.

To optimize the performance of PBE, many different approaches have been proposed. One im-

portant technique is dynamic programming. Dynamic-programming-based approaches deductively

divide the synthesis problem into subproblems of synthesizing smaller programs, where the solu-

tions to the subproblems can be reused. For example, the problem of synthesizing an expression

returning "aa" can be divided into two subproblems, each of them synthesizes an expression re-

turning "a", such that concatenating the two expressions gives a solution to the original problem.

Moreover, the result of the first subproblem can be reused for the second one since they have the

same requirement. A representative dynamic-programming-based approach is PROSE [Polozov and

Gulwani 2015], which uses pre-defined rules over operators, called witness functions, to divide a
synthesis problem into subproblems. PROSE framework has been used to construct many different

applications [Barowy et al. 2015; Gulwani 2011; Kini and Gulwani 2015; Le and Gulwani 2014;

Padhi et al. 2018; Singh and Gulwani 2012] including FlashFill [Gulwani 2011], a PBE system for

automatically synthesizing string manipulation programs in spreadsheets.

Recent evidence suggests that probabilistic models based on structural probability could be used

to accelerate program synthesis. Though in theory a rich space of programs can be written, in

practice programs always fall into a small subspace that is predictable, and can be modeled by a

statistical model that relies only on the structure of a program. For example, an expression a + 1
is more probable than a − 1 + 2. Euphony [Lee et al. 2018], a recently proposed approach, uses

structural probability to accelerate enumerative search: It uses a learned probabilistic model to

model the structural probability and enumerates the programs in the descending order of the

probability until one is verified to be correct. The results show that Euphony achieves significant

speed-ups. Compared with other probabilistic models such as a conditional probabilistic model

over a context (e.g., a natural language description), the advantage of structural probability is that

it can be easily modeled by a lightweight model, leading to great advantage on the speed.

Though Euphony successfully uses structural probability to accelerate the enumerative search, it

is still unknown how to use structural probability to guide dynamic programming – one of the most

important directions for accelerating PBE. In this paper we solve this problem by proposing a novel

framework,MaxFlash, to utilize both dynamic programming and structural probability for efficiently

solving PBE problems. MaxFlash follows PROSE to use witness functions to divide problems, and

thus can be easily applied to a large number of existing PROSE applications where witness functions

have already been defined. Our evaluation on 244 synthesis problems for string manipulation

and matrix transformation shows thatMaxFlash achieves ×4.107 − ×2080 speed-ups against
six state-of-the-art solvers, namely PROSE [Polozov and Gulwani 2015], Euphony [Lee et al.

2018], Eusolver [Alur et al. 2017b], CVC4 [Reynolds et al. 2019a], Atlas [Wang et al. 2018a] and

NGDS [Kalyan et al. 2018]. Besides, we also compare the probabilistic model used in MaxFlash with

DeepCoder [Balog et al. 2017], a state-of-the-art framework on training probabilistic models for

synthesizers: The result demonstrates the advantage of MaxFlash.
Designing MaxFlash requires to address a series of significant challenges. The first major

challenge is the gap between the locality of subproblems in dynamic programming and
the globality of structural probability. Intuitively, we would like to use structural probability
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to avoid solving subproblems forming improbable programs. However, a subproblem contains only

a fragment of a program, and we cannot know the structural probability of a whole program by

examining only a local fragment. For example, an expression Inc(a) is probable, but becomes

improbable when forming an improbable combination with other operations, e.g., Dec(Inc(a)),
or used together with improbable components, e.g., (a/0)*Inc(a).

To solve this problem, we introduce a novel subproblem definition that allows the local search of

a program fragment to be aware of the global probability. More concretely, the new subproblem

contains two additional parameters:

• The first one is a context, which captures the context of surrounding programs to calculate the

probability of the current subprogram. For example, when the context is Dec(?), Inc(a) is

not a probable choice. In particular, we design a special probabilistic model, named topdown

prediction model, for efficiently maintaining the context during dynamic programming: In a

topdown prediction model, the context captures only the information from the ancestors but not

siblings, such that the probability calculation of sibling subproblems are independent from each

other, allowing subproblems to be searched independently.

• The second one is a probability lowerbound, which is a key component for performing branch-and-

bound [Land and Doig 1960]. The probability lowerbound is propagated from parent subproblems

to children subproblems to give a lowerbound on the probability for the current subprogram

to form a globally probable program. For example, all the programs with form (a/0)*? will be
ignored if (a/0) violates the probability lowerbound for its subproblem.

We use an iteratively deepening search to focus on probable programs: we start with a high

probability lowerbound for the whole program and iteratively decrease the lowerbound until a

solution is found. Besides, we use branch-and-bound to effectively prune off improbable search

branches: We introduce a heuristic function which estimates the probability upperbound of valid

programs to a subproblem, such that (1) a subproblem can be pruned off immediately once its

heuristic value is smaller than the lowerbound, (2) the lowerbound of a subproblem can be better

calculated by considering the heuristic values of its sibling subproblems.

The second major challenge is the chance of reusing subproblems. Standard dynamic

programming reuses solutions of subproblems with exactly the same set of parameters. However,

after adding the lowerbound, the chance for reusing a subproblem becomes extremely small.

To solve this problem, we turn the subproblems into optimization problems: Instead of searching

for any valid program, we require to search for the program with the maximum probability. In

this way, we can reuse the solution of a subproblem for another with a different lowerbound. To

further boost the opportunities of subproblem reuse, we introduce two additional reuse mechanisms,

including reusing existing solutions for better propagating the lowerbound and reusing solutions of

the subproblems with fewer input-output constraints to solve subproblems with more constraints.

To sum up, this paper makes the following main contributions:

• A novel framework MaxFlash that combines dynamic programming and structural probability

for efficiently solving PBE tasks. MaxFlash follows PROSE to use witness functions for dividing

synthesis problems and can utilize existing witness functions in many applications of PROSE. In
particular, MaxFlash includes

– a novel subproblem definition that allows the local search of a program fragment to be aware

of global structural probability while still allowing subproblem reuse,

– a search algorithm that integrates iteratively deepening search and branch-and-bound, and

– two additional reuse mechanisms to further boost subproblem reuse.

• An evaluation on a set of string manipulation and matrix transformation problems showing that

MaxFlash has ×4.107 − ×2080 speed-ups against existing state-of-the-art solvers.
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2 OVERVIEW
In this section, we introduce the basic idea of our approach via a motivating example, which will

be discussed throughout this paper. In this example, we focus on synthesizing a program from a

small domain-specific language Lex :

Start symbol S → NS | NZ
String expr NS → Parameters | (+ NS NS)

| (CharAt NS NZ) | ‘.’
Integer value NZ → 0 | 1

Now, given an input-output example (‘John’, ‘Jonathan’) → ‘J.Jonathan’, our goal is to find

a program P in Lex that outputs ‘J.Jonathan’ when the input is (‘John’, ‘Jonathan’). Under these
constraints, one valid program is:

(+ (CharAt FS 0) (+ ‘.’ LS ))

where FS and LS represent the two input strings respectively.

To start, we briefly introduce the dynamic-programming algorithm used in PROSE, as shown in

Figure 1. In PROSE, a subproblem is to synthesize a program returning a specific value. PROSE uses

a memoization search to reuse the subproblems.

(1) In the given example, to synthesize a program outputting ‘J.Jonathan’, the synthesizer finds
possibilities to divide this problem into subproblems. Each such possibility is denoted as a

scheme. The synthesizer finds schemes by (1) enumerating possible syntactic forms: a parameter,

a single constant, (+ NS NS), and (CharAt NS NZ), and (2) enumerating possible outputs that

the subprograms in the forms could produce. For example, when the form is (+ NS NS), there
are 9 possibilities: (‘J’, ‘.Jonathan’), (‘J.’, ‘Jonathan’), · · · , (‘J.Jonatha’, ‘n’).

(2) The synthesizer enumerates among schemes. Suppose the current scheme is (‘J.’, ‘Jonathan’).
Then the synthesizer turns to synthesize a program P1 that outputs ‘J.’ and a program P2 that
outputs ‘Jonathan’ . If both P1, P2 are found, (+ P1 P2) will be a valid program that outputs

‘J.Jonathan’ on input (‘John’, ‘Jonathan’). Tasks of synthesizing P1 and P2 keep the same

form as the original task, and thus can be solved by recursively invoking the synthesizer.

As we can see from Figure 1, the subproblem whose target output is ‘Jonathan’ is invoked twice

but only searched once, through the memoization mechanism.

Such a search process is blind: the synthesis algorithm may explore a lot of poor subproblems

before finding a valid program. To improve this, MaxFlash utilizes the structural probability of

programs. Imagine, if we let human programmers write this program, there may be some common

preferences in their programs. These commonalities can be modeled as a probabilistic model and

thus guide the search. For example, programmers may prefer writing (+ P1 (+ P2 P3)) rather than
(+ (+ P1 P2) P3) to make the first argument of + simpler. This pattern could be modeled as: when

the whole program has the form (+ P1 P2), the probability that the outmost operator of P1 is +
would be low.

Table 1 shows a potential probabilistic model Pex
for modeling structural probability, which

describes the probability for a symbol to appear as a certain child of another symbol in AST. In

the table, the rows represent the parent symbol and the index of the child, while the columns

represent the child symbol. For example, the grid at row (+, 1) and column FS represents the

probability for FS to be used as the first child of +. Given model Pex
, the probability of a program

can be obtained by multiplying the probabilities of each part. For example, the probability of

(+ (CharAt FS 0) (+ ‘.’ LS )) is 0.01 under model Pex
.
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Fig. 1. Decision procedure of PROSE Fig. 2. Decision procedure ofMaxFlash

Table 1. A conrete statistical model Pex

CharAt + FS LS ’.’ 0 1

Start 0 1 0 0 0 0 0

(+, 1) 0.5 0.01 0.09 0 0.4 0 0

(+, 2) 0.05 0.5 0.05 0.4 0 0 0

(CharAt, 1) 0.05 0.05 0.5 0.4 0 0 0

(CharAt, 2) 0 0 0 0 0 0.5 0.5

This model reflects the globality of probability calculation: when calculating the probability

of child symbol, we need to refer to its context: the parent symbol and the index. However, the

subproblem definition in PROSE is local: when solving a subproblem, we do not concern its parent

symbol. For example, in Figure 1, subproblemO = Jonnathan is used twice with different contexts:

(CharAt, 1) and (+, 2). As a result, Pex
cannot be used in PROSE directly.

Such a conflict between the globality of structural probability and the locality of subproblems is

the first challenge we met. To solve it, MaxFlash modifies the dynamic-programming algorithm in

PROSE by further involving two parameters: the context of the subproblem and a probability lower

bound. The decision procedure after involving these two parameters is shown in Figure 2.

Context. The context of a subproblem, denoted as c , is equal to its ancestral information required

for our probabilistic model. After involving it, the local subproblem could partially access global

information, and thus a large family of prediction models becomes applicable. For example, accord-

ing to Pex
, the context of a subprogram should be the symbol of its parent vertex and its index.

With this definition, we attach the context to each subproblem in Figure 2. After that, subproblem

O = Jonnathan in Figure 1 is split into two different subproblems, marked green in Figure 2, and

thus the algorithm could correctly use the probabilities in Pex
.
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Probability Lowerbound. The probability lowerbound to a subproblem, denoted as L, is a
requirement for the probability of the result. It means a valid program with a probability larger

than L is required to produce a globally probable program. Each time when MaxFlash recurses into

a subproblem, the lowerbound will also be propagated into it. In this way, the search is guided to

consider only probable programs.

As mentioned before, MaxFlash utilizes iteratively deepening search: it starts with a high lower-

bound to focus on the program with the highest probability. If no solution is found, it lowers the

lowerbound by a constant value to allow more programs. MaxFlash repeats this procedure until

a solution is found. MaxFlash also utilizes branch-and-bound: The lowerbounds are propagated

among subproblems and are used to prune off improbable search branches. The propagation mech-

anism in MaxFlash is built upon a heuristic function, which overestimates the probability of the

most probable valid program of each subproblem.

Here, we use a simple example to show how the probability lowerbounds propagate among

subproblems and how it helps MaxFlash to prune off search branches. To begin with, we introduce

a simple heuristic function: the heuristic value of a subproblem is defined as the probability of the

most probable program to this subproblem under the context, i.e., the input-output constraints

are ignored. We tag the heuristic value above every subproblem in Figure 2 as red numbers. Now,

consider the procedure of synthesizing a program P with form (+ NS NS) and lowerbound L = 0.01.

(1) While synthesizing the first argument, suppose its program is P1, the lowerbound L could be

raised to
0.01
0.4 = 0.025. This is because the probability of P is the product of those of its two

arguments, and the probability of the second argument is no more than its heuristic value, 0.4.
(2) While enumerating the possible symbols for the root node of P1, + can be skipped since its

probability is lower than L. In this way, a large number of possible subproblems are pruned off.

(3) Suppose the current form of P1 is (CharAt NS NZ). The synthesizer will then synthesize the

first argument, denoted as P1,1. At this time, L could be raised again to
0.025

0.5×0.5 = 0.1, which
divides the probability that the form of P1 is CharAt, 0.5, and the heuristic value of the second
argument, 0.5. With this limit, the choices of P1,1 remains only two possibilities: FS and LS .

However, after involving the probability lowerbound, the second major challenge emerges. Since

the probability lowerbound is a real number and is integrated into subproblems, visiting the same

subproblem twice becomes almost impossible. It turns out that the traditional reuse mechanism in

dynamic programming becomes ineffective. To solve this problem, one intuitive idea is to reuse

results between subproblems which only differ on the lowerbounds. However, this reuse is still very

limited: we can reuse a solution only when the previously synthesized program has a probability

higher than the new lowerbound, otherwise, we cannot say anything about the new problem.

To enable reusing a previous solution with a different lowerbound, MaxFlash modifies the search

goal. It regards the synthesis problem as an optimization problem, which means it would not

only produce a valid program but also find the one with the largest probability. In this way, the

probability lowerbound can be ignored while reusing: if the previously synthesized program has a

probability higher than the lowerbound, we return this program, otherwise, we report a failure.

Besides, we design two reuse mechanisms which can further reuse results and even reuse between

subproblems with different input-output constraints. Here we just introduce the intuitions behind

these two mechanisms. A detailed discussion can be found in Section 4.

(1) Reusing through the heuristic function: As many existing applications of branch-and-

bound, MaxFlash will automatically refine the heuristic function using the newly obtained

information during the synthesis. For example, if MaxFlash fails to synthesize a program for

subproblem S under lowerbound L, the heuristic value of S will be improved to L. Moreover,

MaxFlash takes advantage of a special relationship between subproblems in program synthesis,
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and thus utilize the heuristic value of subproblems with fewer examples. In this way, the

heuristic function becomes more and more accurate and thus its effect on pruning off useless

search branches is constantly improved during synthesis.

(2) Reusing results with fewer examples: The time cost for the dynamic-programming algo-

rithm grows dramatically when the number of examples increases since there are more different

input-output constraints, and thus more different subproblems. Therefore MaxFlash tries to

reuse results with fewer examples. For example, to synthesize a program from two examples E1
and E2, MaxFlash will firstly synthesize a program satisfying E1 and then check whether it also

satisfies E2. If true, MaxFlash will return this program as the answer directly.

3 COMBINING DYNAMIC PROGRAMMING AND STRUCTURAL PROBABILITY
The core ofMaxFlash is a combination of dynamic programming and structural probability.MaxFlash
uses a series of methods to use structural probability to guide the search procedure of dynamic

programming. In this section, we will introduce them step by step: Subsection 3.1 firstly introduces

a basic dynamic-programming-based synthesizer. Then, the next four subsections 3.2, 3.3, 3.4, and

3.5 integrate contexts, iteratively deepening search and branch-and-bound, heuristic functions, and

CEGIS framework into the dynamic-programming-based synthesizer in order.

We begin with a brief introduction to Programming by Example (PBE). A PBE task is usually

defined over a Domain-Specific Language (DSL). Throughout this paper, we assume the syntax of

a DSL is described by a context-free grammar G = ⟨N , Σ, s0,R⟩ where N is a set of nonterminal

symbols, Σ is a set of terminal symbols, s0 represents the start symbol and R is the set of production

rules. For simplicity, we further assume all production rules are in the form of (s, f (x1, . . . ,xk ))
which represents nonterminal symbol s can be expanded to a function using operator f and taking

symbols x1, . . . ,xk as parameters. Specially, all production rules of constants and variables are

regarded as functions with no parameter.

The task of PBE is to synthesize a program consistent with some given examples, from a given

DSL. Different frommost traditional synthesis approaches like FlashFill,MaxFlash regards a PBE task
as an optimization problem: MaxFlash requires a TopDown Prediction Model, a special probabilistic
model based on structural probability which will be introduced in Subsection 3.2, and always

synthesizes the most probable program among all programs consistent with input-output examples.

3.1 Basic: A Dynamic-Programming-Based Synthesizer
The key idea of dynamic-programming is to divide the target problem into subproblems. Therefore,

we start by defining the subproblems used in this subsection.

Definition 3.1 (PBE Subproblem). Given a grammarG, a PBE subproblem is a pair (s,A), where:
(1) s is a non-terminal symbol inG; (2) A is a list of input-output constraints {Ii → Oi }

n
i=1, where Ii

is an assignment to variables and Oi is a set of valid outputs.

The goal of a PBE subproblem (s,A) is to find a valid program or determine there is no valid

program. A valid program to PBE subproblem (s,A) is a program p which is expanded from

nonterminal s inG and is consistent with all input-output constraints in A, i.e., ∀(Ii ,Oi ) ∈ A, the
output of p on Ii is a member of set Oi . i.e. p (Ii ) ∈ Oi .

Algorithm 1 describes a basic dynamic-programming-based synthesizer. There are two functions

used in Algorithm 1:

• ValidProgram(problem) always finds a valid program to a given PBE subproblem problem.

• GetAllSchemes(problem) returns a set of schemes of dividing problem. Each scheme is comprised

of a grammar rule form, and k subproblems, where k is the number of arguments used in form. A

scheme represents a way to divide problem into subproblems. GetAllSchemes(·) is implemented
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Algorithm 1: A basic synthesizer based on dynamic programming

Input: A PBE task specified by a grammar G = ⟨N , Σ, s0,R⟩ and a set of input-output examples E.
Output: A valid program program∗, or ⊤ for no valid program.

1 memoTable← {};
2 Function ValidProgram(problem = (s,A)):
3 if problem ∈ memoTable then return memoTable[problem];

4 for (form, subproblem1, . . . , subproblemk ) ∈ GetAllSchemes(problem) do
5 subprogrami ← ValidProgram(subproblemi) for each i ∈ [1,k];

6 if ∀i ∈ [1,k], subprogrami , ⊤ then
7 result← ConstructProgram(form, subprogram1, . . . , subprogramk);

8 memoTable[problem]← result;
9 return result;

10 end
11 memoTable[problem]← ⊤;

12 return ⊤;
13 return ValidProgram((s0,E));

in the same way as PROSE [Polozov and Gulwani 2015]. For rule form and each input-output

constraint Ii → Oi in problem, GetAllSchemes(·) uses pre-defined rules, named as witness

functions, to obtain input-output constraints for subproblems. Function GetAllSchemes(·) enu-

merates on all combinations of resulting input-output constraints for different examples and

thus gets a set of possible schemes.

Algorithm 1 maintains a memoization table memoTable which records valid programs for all

visited subproblems. Each time when ValidProgram(·) receives a repetitive subproblem, it accesses

memoTable and directly returns a valid program (Line 3). Otherwise, ValidProgram(·) enumerates

on possible schemes of dividing problem into subproblems (Line 4). ValidProgram(·) recursively
finds valid subprograms for subproblems (Line 5). If for every subproblem, a subprogram is found,

ValidProgram(·) will merge these subprograms into a valid program to problem (Line 7) and
will return this program (Lines 8 − 9). Otherwise, if no valid program is found after dealing

with all schemes, ValidProgram(·) will return ⊤ (Lines 11 − 12). According to Definition 3.1,

ValidProgram((s0,E)) must be a valid program for the given PBE task (Line 13).

3.2 Integrating Contexts
As mentioned before, MaxFlash introduces a context to the definition of the subproblem to allow

the calculation of structural probability and turns the subproblem into an optimization problem

that searches for the most probable program. To efficiently maintain the context while dynamic

programming, MaxFlash assumes the context captures only the information from the ancestors

but does not include the information from siblings. In this way, when searching for the optimal

solution for a subproblem, we can directly search for the optimal solution for each of its children

independently, forming an efficient dynamic programming structure.

We use a topdown context model to represent the context information extracted from the

ancestors. For each vertex, the context model constructs its context from the context of its parent,

the grammar rule used on the parent, and the index of this vertex among all siblings.

Definition 3.2 (TopDown Context Model). Given a set of grammar rules R, a topdown context

model M is a triple ⟨C, c0,τ ⟩ where C represents a set of abstracted context, c0 ∈ C represents the

start context, and τ is a transition function of type (C × R × Z+) → C .
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Given topdown context model ⟨C, c0,τ ⟩ and program p, topdown context Cp (v ) ∈ C of vertex v
on the AST of program p is defined as:

Cp (v ) =

{
c0 v is the root

τ (Cp ( f ), rf ,x ) Otherwise

where f represents the parent vertex of v , rf represents the rule applied to f , and x is the index of

v among all children of f from left to right.

Example 3.3. Contexts used in Section 2 can be represented by a topdown context model Mex =

⟨Cex , cex0 ,τ ⟩. This model considers the information from the direct parent, i.e., the context of the

parent is ignored. Model Mex
is specified over the rule set of Lex (the DSL used in Section 2), and

its contents are:

Cex = {⊤} ∪ (R × Z+) cex0 = ⊤ τ ex (c, r ,x ) = (r ,x )

This model captures the information for each node in AST about the rule applied to its parent

and its index. To show this point, we apply this model and calculate the context for some vertices

in the AST of the valid program discussed in Section 2. The results are shown in Figure 3.

Node Parent Index Cp (·)

1 / / ⊤

2 1 1 (NS → (+ NS NS), 1)
5 1 2 (NS → (+ NS NS), 2)
7 5 2 (NS → (+ NS NS), 2)

Fig. 3. An example of topdown contexts. The left figure shows the AST of program (+ (CharAt FS 0) (+ ‘.’ LS )),
and the right table lists the topdown contexts for some vertices of this AST.

Definition 3.4 (TopDown Prediction Model). Given a set of grammar rule R, a topdown prediction

model (abbreviated as TPM) P is a topdown context model ⟨C, c0,τ ⟩ combined with a function

φ : C × R 7→ R≥0 which satisfies ∀c ∈ C,
∑

r ∈R φ (c, r ) = 1.

TPM uses φ (c, r ) to represent the probability for rule r to be applied to an AST vertex under

context c . The probability of a program is equal to the product of the probabilities of all vertices

on its AST. Throughout this paper, we use Pc [p] to denote the log-probability of program p under

prediction model P and context c , and use this value to represent the structural probability.

Example 3.5. Continued with Example 3.3, model Pex
defined in Section 2 is exactly a TPM over

Mex
and Lex . According to Pex

:

Pex
⊤ [(+ (CharAt FS 0) (+ ‘.’ LS ))] = log 0.01 ≈ −4.61

Pex
⊤ [(+ (+ (CharAt FS 0) ‘.’) LS )] = log 0 = −∞

TPM keeps three important properties, making it suitable for dynamic programming:

(1) Under a topdown context model, sibling problems are independent from each other, allowing

them to be searched independently.

(2) The calculation is local: The context can be transmitted only from the parent vertex, making

the local transition of dynamic programming possible.

(3) The number of different contexts is limited (i.e., |C |) so that adding the context into subproblems

would not significantly increase the number of different subproblems.
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Algorithm 2: A dynamic-programming based synthesizer for optimization subproblems.

Input: A PBE task specified by a grammar G = ⟨N , Σ, s0,R⟩, a set of input-output examples E and a TPM

P = ⟨C, c0,τ ,φ⟩.
Output: A valid program program∗ with the highest probability according to P.

1 memoTable← {};
2 Function OptimalProgram(problem = (s,A, c )):
3 if problem ∈ memoTable then return memoTable[problem];

4 (bestProgram, bestProbability) ← (⊤,−∞);

5 for (form, subproblem1, . . . , subproblemk ) ∈ GetAllSchemes(problem) do
6 subprogrami ← OptimalProgram(subproblemi) for each i ∈ [1,k];

7 if ∀i ∈ [1,k], subprogrami , ⊤ then
8 candidate← ConstructProgram(form, subprogram1, . . . , subprogramk);

9 if P[candidate]c > bestProbability then
10 (bestProgram, bestProbability) ← (candidate,Pc [candidate]);
11 end
12 memoTable[problem]← bestProgram;

13 return bestProgram;

14 return OptimalProgram((s0,E, c0));

Now we are ready to define the subproblems used in MaxFlash. To distinguish from PBE sub-

problems, we name the new subproblems as Optimization Subproblem, abbreviated as Subproblem.

Definition 3.6 ((Optimization) Subproblem). Given a grammar G and a TPM P, an optimization

subproblem is a triple (s,A, c ), where: (1) s is a non-terminal symbol in G. (2) A is a list of input-

output constraints {Ii → Oi }
n
i=1, where Ii is an assignment to variables and Oi is a set of valid

outputs. (3) c is an abstracted context in P.

The optimal program to subproblem (s,A, c ) is a program p∗ satisfying (1) validity: p∗ can be

expanded from symbol s in G and is consistent with all input-output constraints, i.e., ∀(Ii ,Oi ) ∈ A,
the output of p∗ on Ii is a member of the set Oi . (2) optimality: for any valid program p to

subproblem (s,A, c ), the probability of p∗ is always no smaller than p, i.e., P[p∗] ≥ P[p]. If there is
no valid program, the optimal program of (s,A, c ) is defined as ⊤.

After determining the definition of subproblems, the way of extending the dynamic-programming

algorithm becomes clear. Algorithm 2 describes a synthesizer for Optimization Subproblems. Algo-
rithm 2 is almost the same as Algorithm 1, except for two differences:

• The main synthesis algorithm changes to OptimalProgram(·), which always finds the optimal

program for a given subproblem problem (Line 2).
• For each scheme, OptimalProgram(·) recursively finds optimal subprograms for subproblems

(Line 6). By the optimality of OptimalProgram(·), the program constructed from these subpro-

grams must be the most probable program to this scheme (Line 8). OptimalProgram(·) will use

this program to update results and ignore all other programs to this scheme (Lines 7 − 10) and
will return the best program among all schemes as the result (Lines 12 − 13).

3.3 Integrating Iteratively Deepening Search and Branch-and-Bound
Algorithm 2 searches for the most probable but does not use structural probability to guide the

search, which is our goal. To further utilize structural probability, we integrate iteratively deepening

search [Korf 1985] and branch-and-bound [Land and Doig 1960], two efficient search strategies for
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Algorithm 3: A synthesizer integrating iteratively deepening search

Input: A PBE task specified by a grammar G = ⟨N , Σ, s0,R⟩, a set of input-output examples E, a TPM
P = ⟨C, c0,τ ,φ⟩ and a step size size.

Output: A valid program program∗ with the highest probability according to P.

1 memoTable← {};
2 Function GetBound(problem = (s,A, c ), lowerbound, form, scheme, i):
3 return lowerbound − logφ (c, form);

4 Function OptimalProgram(problem = (s,A, c ), lowerbound):
5 if problem ∈ memoTable then
6 bestProgram← memoTable[problem];

7 if Pc [bestProgram] ≥ lowerbound then return bestProgram else return ⊤;
8 end
9 if lowerbound > 0 then return ⊤;

10 (bestProgram, bestProbability) ← (⊤,−∞);

11 for scheme = (form, subproblem1, . . . , subproblemk ) ∈ GetAllSchemes(problem) do
12 for i ∈ [1,k] do
13 subBoundi ← GetBound(problem, lowerbound, form, scheme, i) for each i ∈ [1,k];

14 subprogrami ← OptimalProgram(subproblemi , subBoundi) for each i ∈ [1,k];

15 end
16 Update bestProgram. This part is the same as Lines 7 − 10 in Algorithm 2;

17 lowerbound← max(lowerbound, bestProbability);
18 end
19 if bestProgram , ⊤ then memoTable[problem]← bestProgram;

20 if bestProbability ≥ lowerBound then return bestProgram else Return ⊤;
21 lowerbound← 0;

22 while OptimalProgram((s0,E, c0), lowerbound) = ⊤ do
23 lowerbound← lowerbound − step ;
24 end
25 return OptimalProgram((s0,E, c0), lowerbound);

finding an optimal solution, into the dynamic-programming-based synthesizer. The pseudo-code of

the new synthesizer is shown in Algorithm 3.

We now elaborate on the differences between Algorithm 3 and Algorithm 2. The first difference

is that the signature of OptimalProgram(·) changes: Besides a subproblem, OptimalProgram(·)
in Algorithm 3 further requires a real number lowerbound. OptimalProgram(problem, lowerbound)
searches for the optimal program only among valid programs with log-probabilities no smaller

than lowerbound, and it will return ⊤ if the log-probability of the optimal program is smaller than

lowerbound. In this way, the search space of OptimalProgram(·) is greatly reduced.

The second difference is that branch-and-bound is integrated into Algorithm 3: The lowerbound

is propagated among subproblems and is used to prune off improbable search branches.

• Propagating. Given a form and a scheme, GetBound(·) propagates the lowerbound of problem to

its subproblems (Line 13). In Algorithm 3, GetBound(·) is implemented conservatively: it only

subtracts the probability for form to occur under context c , but ignores the probability of other

subproblems. Besides GetBound(·), the lowerbound will also be updated once a better program

is found (Line 17), since we only need to focus on programs better than bestProgram.
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• Pruning. The pruning method in Algorithm 3 is also conservative: Since the log-probability of a

program cannot be larger than 0, it is safe to prune off a search branch when the lowerbound is

greater than 0 (Line 9).

Like many applications of branch-and-bound, the efficiency of these two parts can be improved by

involving a proper heuristic function. We will detailedly discuss this point in Section 3.4.

The next difference is that Algorithm 3 takes iteratively deepening search as the outer framework

(Lines 21−25). Algorithm 3 maintains a global lowerbound lowerbound (Line 21) and synthesizes in
turns (Lines 22 − 24). In each turn, it invokes OptimalProgram(·) to search for the target program

among all programs with log-probabilities no smaller than lowerbound (Line 22). The lowerbound
will be relaxed in turns until the target program is found (Line 23).

The last difference is on the reuse mechanism (Lines 5 − 8, 19). In Algorithm 2, each subproblem

is dealt with at most once: whether the first result is a program or ⊤, this result can be always

reused when visiting the same subproblem again. However, after involving the lower bound, the

reuse mechanism becomes more complex. Since OptimalProgram(·) only considers programs with

log-probabilities at least lowerbound, we have to ignore all failed results since we cannot distinguish
the case of no valid program and the case that the optimal program is not probable enough. We

shall show how to use a heuristic function to indirectly reuse all failed results in Subsection 4.1.

3.4 Integrating Heuristic Function
To speed up branch-and-bound, heuristic function is a commonly used technique, as it can effectively

improve the performance of both the propagating method and the pruning method. Therefore, we

further integrate a heuristic function into Algorithm 3.

We begin with the definition of heuristic functions. For convenience, we define bestProb(problem)
as the log-probability of the optimal program of problem problem. Specially, when the optimal

program is ⊤, bestProb(problem) is defined as −∞. The heuristic function used in MaxFlash is an

over-approximation to bestProb for all possible subproblems.

Definition 3.7 (Heuristic Function). Function heuristic which maps subproblems to real numbers

is a heuristic function if and only if for any subproblem problem, heuristic(problem) is no smaller

than bestProb(problem).

In this subsection, we first assume the existence of a black-box heuristic function heuristic, and
show how to use this heuristic function to speed up Algorithm 3. After that, we will implement a

basic heuristic function heuristic0. In Subsection 4.1, we will elaborate on the heuristic function

used in MaxFlash, which is improved from heuristic0.
Algorithm 4 shows a new version of OptimalProgram(·)which utilize a heuristic function while

propagating lowerbounds and pruning off improbable search branches:

• Propagating. Algorithm 4 uses a new implementation of GetBound(·)(Lines 2 − 4) to prop-

agate lowerbounds. Comparing with Algorithm 3, GetBound(·) here considers the probabil-

ity of sibling subprograms by subtracting the heuristic values of other subproblems, since

heuristic(subproblemj ) is an upper bound for the log-probability of the jth subprogram.

• Pruning. Algorithm 3 will directly return ⊤ once the heuristic value of problem is smaller than

lowerbound (Line 10) (while 0 is used in Algorithm 3). Such an early termination is safe because

the heuristic value is guaranteed to be no smaller than the log-probability of the best program.

Besides these two aspects, the heuristic function is also used to organize the order of enu-

merating schemes. Algorithm 4 enumerates schemes in the decreasing order of logφ (c, formi ) +∑
subp∈subproblemsi heuristic(subp), i.e., the log-probability for the from to occur under context c plus

the sum of heuristic values of subproblems. Clearly, this sum is an upper bound of the log-probability
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Algorithm 4: A synthesizer integrating iteratively deepening search and a heuristic function

Input: A PBE task specified by a grammar G = ⟨N , Σ, s0,R⟩, a set of input-output examples E, a TPM
P = ⟨C, c0,τ ,φ⟩, a step size size.

Output: A valid program program∗ with the highest probability according to P.

1 memoTable← {};
2 Function GetBound(problem = (s,A, c ), lowerbound, form, scheme, i):
3 (subproblem1, . . . , subproblemk ) ← scheme ;
4 Return lowerbound − logφ (c, form) −

∑
j ∈[1,k ], j,i heuristic(subproblemj );

5 Function SortSchemes(problem = (s,A, c ), allSchemes = {(formi , subproblemsi )}
t
i=1):

6 Sort allSchemes in the decreasing order of logφ (c, formi ) +
∑
subp∈subproblemsi heuristic(subp).

7 Return allSchemes ;
8 Function OptimalProgram(problem = (s,A, c ), lowerbound):
9 Reuse results in memoTable. This part is the same as Lines 5 − 8 in Algorithm 3.

10 if heurisitc(problem) < lowerbound then Return ⊤;

11 (bestProgram, bestProbability) ← (⊤,−∞);

12 for scheme = (form, subproblems) ∈ SortSchemes(problem, GetAllSchemes(problem)) do
13 Deal with scheme. This part is the same with Lines 12 − 17 in Algorithm 3.

14 end
15 Store and return the result. This part is the same as Lines 19 − 20 in Algorithm 3.

16 The outer framework. This part is the same as Lines 21 − 25 in Algorithm 3.

of valid programs to schemei . Intuitively, the larger the upper bound is, the more probable finding

a valid program from schemei will be. Therefore we enumerate schemes in this order.

Now we introduce a basic heuristic function heuristic0. For a subproblem problem = (s,A, c ),
heuristic0 (problem) is defined as bestProb((s, ∅, c )), i.e., the log-probability of the most probable

program expanding from non-terminal symbol s under context c .

Example 3.8. heuristic0 is the logarithm of the heuristic function used in our motivating example.

Figure 2 shows some examples of heuristic0.

The validity of heuristic0 is based on the following lemma:

Lemma 3.9. For any two subproblems problem1 = (s,A, c ), problem2 = (s,A′, c ) where A′ ⊆ A,
i.e., the input-output constraints in problem1 is a subset of problem2, we have that bestProb(problem1)
is no larger than bestProb(problem2).

Proof. Let program be the optimal program for problem1. Since A
′
is a subset of A, program

must be valid to problem2. Therefore bestProb(problem1) = Pc [program] ≤ bestProb(problem2) □

Since ∅ is a subset of any other set, heuristic0 (problem) must be at least bestProb(problem). In
this way, we prove the validity of heuristic0.
One advantage of heuristic0 is that its value can be quickly obtained. Since heuristic0 (·) only

relies on non-terminal symbol s and context c , the number of different heuristic values is at most

|N | × |C |, i.e., the number of nonterminal symbols times the number of contexts, which is a small

number. In our implementation, all possible values of heuristic0 are pre-calculated and cached

for queries. An optimization algorithm proposed by Gallo et al. [1993] is used here, which could

calculate all heuristic values in time complexity O ( |N | |C | log |C |).

Example 3.10. In Section 2, we have discussed Algorithm 4 with heuristic function heuristic0.
The workflow of Algorithm 4 on our motivating example is drawn as Figure 2.
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Algorithm 5: Outer Framework of MaxFlash
Input: A TPM P = ⟨C, c0,τ ,φ⟩, a set E = {(Ii ,Oi )}

n
i=1 of input-output examples and a step-size step.

Output: The target program program∗.
1 counterExamples← ∅;
2 lowerBound← 0;

3 while True do
4 while OptimalProgram(counterExamples, lowerBound) = ⊤ do
5 lowerBound← lowerBound − step;
6 end
7 program← OptimalProgram(counterExamples, lowerBound);
8 counterExample← GetCounterExample(program, E);
9 if counterExample = ⊤ then return program ;

10 counterExamples.Insert(counterExample);
11 end

3.5 Integrating CEGIS Framework
One shortage of dynamic-programming-based synthesizers is that their efficiencies are affected

by the number of examples: since the input-output constraints of all examples are encoded into

subproblems, the more examples are, the more subproblems will be, and thus the harder reusing

results will be. A useful technique for this issue is CEGIS framework [Solar-Lezama et al. 2006],

which allows the synthesis algorithm to consider only a subset of examples. InMaxFlash, we merge

the outer framework of iteratively deepening search (Line 21 − 25 in Algorithm 3) and CEGIS so

that the lower bound is shared between different turns of CEGIS.

The outer framework of MaxFlash is shown in Algorithm 5, which is comprised of a double loop.

The inner loop (Lines 4 − 6) is the procedure of iteratively deepening search, and the outer one

(Lines 3− 11) follows CEGIS framework. In the outer loop, a small set of examples counterExamples
is maintained. In each turn, the inner loop finds a program program that is consistent with all

examples in counterExamples (Line 4). After that, MaxFlash calls GetCounterExample(·) to verify

whether program is consistent with all other examples in E (Line 8). If true, it will return program
as the result (Line 9). Otherwise, it will add a counter-example to counterExamples (Line 12) and
continue to synthesize for the new set of examples.

The trick in Algorithm 5 is that lowerbound is shared between different turns: by Lemma 3.9, the

log-probability of the optimal program mustn’t increase after adding new examples. Therefore, we

could perform iteratively deepening search on the basis of previous CEGIS turns.

4 EXTRA REUSE MECHANISMS
The core of dynamic programming is a reuse mechanism for repetitive subproblems. In Section 3.3,

we have discussed the basic reuse mechanism in MaxFlash, which reuses all results in which the

optimal programs are found. This mechanism has two shortages:

• It only reuses success results and ignores all failed results. However, there is also a lot of useful

information in failed results.

• It only reuses results for the same subproblem. However, Lemma 3.9 has shown that there are

relations between subproblems with different input-output constraints.

Based on these two points, MaxFlash involves two novel reuse mechanisms: the first reuse mecha-

nism updates the heuristic function according to obtained results and thus reuse the failed results
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Algorithm 6: A synthesizer integrating iteratively deepening search and a heuristic function

Input: A PBE task specified by a grammar G = ⟨N , Σ, s0,R⟩, a set of input-output examples E, a TPM
P = ⟨C, c0,τ ,φ⟩, a step size size.

Output: A valid program program∗ with the highest probability according to P.

1 memoTable← {};
2 memoTableh ← {};
3 Function Heuristic(problem = (s,A, c )):
4 heuristicValue← heuristic0 (problem);

5 for A′ ∈ Prefix(A) do
6 if (s,A′, c ) ∈ memoTableh then heuristicValue← min

(
heuristicValue,memoTableh [(s,A′, c )]

)
;

7 end
8 return heuristicValue ;
9 Function OptimalProgram(problem = (s,A, c ), lowerbound):

10 Reuse results in memoTable and check the heuristic value. The same as Lines 9 − 10 in Algorithm 4.

11 Solve subproblem problem. This part is the same as Lines 11 − 14 in Algorithm 4.

12 if bestProgram , ⊤ then
13 memoTable[problem]← bestProgram;

14 memoTableh [problem]← bestProbability ;

15 else
16 memoTableh [problem]← lowerbound ;
17 end
18 if bestProbability ≥ lowerBound then return bestProgram else return ⊤;
19 The outer framework. This part is the same as Algorithm 5.

indirectly; the second reuse mechanism utilizes the generality of synthesized programs and reuse

the optimal programs with fewer input-output constraints.

4.1 Reusing Through the Heuristic Functions
In this subsection, we introduce the heuristic function heuristic used inMaxFlash, which is improved

from heuristic0, the basic heuristic function discussed in Section 3.4. Algorithm 6 shows a synthesizer

with the full-version heuristic function, in which heuristic is implemented as Heuristic(.).
The reuse mechanism through heuristic function can be divided into two parts. The first part

follows a common idea among applications of branch-and-bound: Failed results can be used to

update the heuristic function. Though failed results cannot be reused directly, it suggests that there

is no valid program with log-probability at least lowerbound. Therefore if OptimalProgram(·) fails,
lowerboundwill be a safe heuristic value for problem. Similarly, for a successful result, bestProbability
is safe, since it is exactly equal to bestProb(problem). In Algorithm 6, all these values are stored in a

new memoization table memoTableh (Lines 14, 16) and are used to improve heuristic0 (problem).
The second part takes advantage of the relationship between subproblems established in Lemma

3.9, and reuses information from fewer constraints to more constraints (Lines 5 − 7) according to

the following two observations. Firstly, since MaxFlash adopts CEGIS framework, before solving

subproblem (s,A, c ), a large number of subproblems (s,A′, c ), where A′ is a prefix of A, have been
dealt with. Secondly, according to Lemma 3.9, if A′ is a prefix of A, bestProb((s,A, c )) must be

at most bestProb(s,A′, c ). Therefore memoTableh [(s,A′, c )] is a valid heuristic value not only for

(s,A′, c ) but also for (s,A, c ). In this way, a tighter heuristic function is obtained:

heuristic((s,A, c )) = min(heuristic0 ((s,A, c )), min
A′ is a prefix of A

memoTableh [(s,A′, c )])
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Example 4.1. We now use two subproblems of the PBE task discussed in Section 2 to show the

reuse mechanism discussed in this subsection. Consider the following two subproblems:

problem1 = (NS, {(‘John’, ‘Jonathan’) → ‘J.Jonathan’},⊤)

problem2 = (NS, {(‘John’, ‘Jonathan’) → ‘J.Jonathan’, (‘John’, ‘Smith’) → ‘J.Smith’)},⊤)

Now, suppose OptimalProgram(problem1,−4) and OptimalProgram(problem2,−3) are invoked
in order. Since the optimal program to problem1 is (+ (CharAt FS 0) (+ ‘.’ LS )) of which the

log-probability is larger than −4, the first invocation fails. Therefore memoTableh [problem1] is set
to −4. During the second invocation, since the constraints of problem1 is a prefix of the constraints

of problem2, Heuristic(problem2) is evaluated to −4 which is smaller than the lowerbound −3.
Therefore the second invocation will terminate with ⊤ immediately.

4.2 Reusing Results with Fewer Constraints
In this subsection, we turn to the last reuse mechanism, which also reuses results from subproblems

with fewer constraints to subproblems with more constraints. This reuse mechanism is based on

the following three observations. For any two subproblems (s,A, c ), (s,A′, c ) where A′ ⊂ A:

(1) The first observation is a corollary to Lemma 3.9: If the optimal program to (s,A′, c ) is a valid
program to (s,A, c ), it must also be the optimal program to (s,A, c ).

(2) The second observation is about the time cost: solving (s,A, c ) is usually much more time-

consuming than solving (s,A′, c ), since (s,A, c ) considers more examples.

(3) The third observation is about the generality of an optimal program, which is inspired by CEGIS

framework: The optimal program of (s,A′, c ) has a great chance to be valid for (s,A, c ), since it
is the most probable program under a prediction model based on structural probability.

Therefore, for a subproblem problemwith multiple input-output constraints,MaxFlash will firstly
solve another subproblem problemf with fewer constraints and checks whether the found program

is valid for problem. If the found program is, the optimal program to problem is found immediately,

and a lot of time will be saved. If it could not, there won’t be too much wasted time since solving

problemf is usually easier than solving problem.

The pseudo-code of this reuse mechanism is shown in Algorithm 7 (Lines 5− 14). The only detail
worth discussing is that MaxFlash takes the result of removing the last constraint from problem
as problemf (Lines 6 − 7). Such a choice has two advantages: (1) The constraint set of problemf is

one of the largest proper subsets of the constraint set of problem. Since almost all constraints are

reserved, the optimal program to problemf is likely to be valid to problem. (2) According to CEGIS

framework, a lot of results on the first |A| − 1 examples are cached in the previous synthesis turn.

Therefore the time cost of solving problemf should not be large.

Example 4.2. We continue to discuss subproblems problem1, problem2 introduced in Example 4.1.

Consider the procedure of OptimalProgram(problem2,−5):

(1) At first, the last constraint of problem2 is removed, and the result is problem1 (Line 6).
(2) Then, OptimalProgram(problem1,−5) is invoked. After finishing this invocation, the optimal

program candidate = (+ (CharAt FS 0) (+ ‘.’ LS )) to problem1 is obtained (Line 7).
(3) Since candidate is a valid program to problem1, it must also be the optimal program to problem2.

Therefore, OptimalProgram(problem2,−5) returns candidate immediately (Lines 9 − 13).

So far, we have illustrated all techniques and reuse mechanisms in MaxFlash. At the end of this

section, we use a theorem to show the correctness of MaxFlash.
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Algorithm 7: The pseudo code of MaxFlash.
Input: A PBE task specified by a grammar G = ⟨N , Σ, s0,R⟩, a set of input-output examples E, a TPM

P = ⟨C, c0,τ ,φ⟩, a step size size.
Output: A valid program program∗ with the highest probability according to P.

1 memoTable← {};
2 memoTableh ← {};
3 Function OptimalProgram(problem = (s,A, c ), lowerbound):
4 Reuse results in memoTable and check the heuristic value. The same as Lines 9 − 10 in Algorithm 4.

5 if |A| > 1 then
6 A′ ← A.RemoveLast();

7 candidate← OptimalProgram((s,A′, c ), lowerbound);
8 if candidate = ⊤ then Return ⊤;

9 if candidate is valid to problem then
10 memoTable[problem]← candidate ;
11 memoTableh [problem]← Pc [candidate];
12 return candidate ;
13 end
14 end
15 Solve problem and update storages. This part is the same as Lines 11 − 18 in Algorithm 6.

16 The outer framework. This part is the same as Algorithm 5.

Theorem 4.3. Given a PBE task and a topdown prediction model P, let V be the set of all valid
programs, the program program∗ synthesized byMaxFlash always satisfies (1) validity: program∗ ∈ V ,
(2) optimality: ∀program ∈ V ,P[program] ≤ P[program∗].

Proof. The proof is in the appendix, which is available at https://github.com/jiry17/MaxFlash.

□

5 IMPLEMENTATION
We implement MaxFlash over the string manipulation domain and matrix transformation domain.

In this section, we shall briefly explain the details of our implementation. Our implementation and

all experimental data are available at https://github.com/jiry17/MaxFlash.

When implementing the iteratively deepening search, we set the step size as 3, i.e., the global
log-probability lowerbound will be relaxed by 3 after each iteration.

In our implementation, we take AST d-gram model as the topdown context model, i.e., the

topdown context of a vertex is comprised of the rules applied to its first d ancestors and the

positional relationship between them. Formally, we define a group of topdown context models

Md = {Cd , c0,d ,τd }, where:

• Cd contains all d-length sequences of which each element is either ⊤ or a pair in R × Z+, repre-

senting the rule applied to a vertex and the index of the next vertex, i.e., Cd = ({⊤} ∪ (R × Z+))d .
• c0,d is the sequence containing only ⊤, i.e., c0,d = (⊤)d .
• τd (c, r , i ) = (e2, . . . , ed , (r , i )), where ei represents the ith element in context c .

In our implementation, we set d to 1 by default. At this time, the context modelM1 is exactly the

context model used in our motivating example. Please note that d-gram model on AST constitutes a

proper subset of topdown prediction models. In our evaluation, we shall demonstrate thatMaxFlash
can achieve significant speed-ups even with these less expressive models.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 224. Publication date: November 2020.

https://github.com/jiry17/MaxFlash
https://github.com/jiry17/MaxFlash


224:18 Ruyi Ji, Yican Sun, Yingfei Xiong, and Zhenjiang Hu

We take a straight-forward way to train the TPM. Given a training set T, for each program p ∈ T
and each vertex v on the AST of p, we record the grammar rule on v and the topdown context of v .
The prediction function φ (c, r ) is defined as the frequency for rule r to occur under context c , i.e.,

φ (c, r ) =
♯{AST vertices with rule r and context c}

♯{AST vertices with context c}

Since different programs use different sets of variables and parameters, we abstract these rules

in the following way:

• All variables with the same type are regarded as the same.

• All integer constants are regarded as the same.

• Over the string manipulation domain, string constants are divided into four categories: one for

the constant that is a substring of both input and output, one for input only, one for output only,

and one for others. All constants in the same category are regarded as the same.

Though the training method seems straight-forward andMd does not fully utilize the expression

ability of TPM, our evaluation results show that MaxFlash performs well even when both the

prediction model and the training method are simple.

6 EVALUATION
To evaluate MaxFlash, we report several experiments designed to answer the following research

questions:

• RQ1: How does MaxFlash compare against existing synthesis techniques?

• RQ2: How does the prediction model affect the performance of MaxFlash?
• RQ3: Is the performance of MaxFlash sensitive to the number of training data?

• RQ4: Do the two reuse mechanisms boost the efficiency of MaxFlash?

6.1 Experimental Setup
Baseline Solvers. We compare MaxFlash with six state-of-the-art synthesizers, which are selected

according to the following criteria. First, we compare MaxFlash with Eusolver and CVC4 because of
their excellent performance in SyGuS-Comp.

• Eusolver [Alur et al. 2017b], the winner of the PBE track in SyGuS-Comp 2016 [Alur et al.

2016]. Eusolver uses an optimized enumeration strategy which makes it especially efficient on

synthesizing if-statements.

• CVC4 [Reynolds et al. 2019a], the winner of the PBE-string track in SyGuS-Comp from 2017 to

2019 [Alur et al. 2019, 2017a]. CVC4 synthesizes programs by an SMT solver and an algorithm

named counterexample-guided quantifier instantiation [Reynolds et al. 2015].

Second, since MaxFlash utilizes dynamic programming and structural probability to accelerate

PBE, we compare MaxFlash with state-of-the-art synthesizers in these two categories.

• PROSE [Polozov and Gulwani 2015], a state-of-the-art framework for dynamic-programming-

based PBE systems, and Transformation.Text (abbreviated as TText), an instantiation of PROSE
over the string manipulation domain evolving from FlashFill [Gulwani 2011].
• Euphony [Lee et al. 2018], a synthesizer utilizing PHOG [Bielik et al. 2016], a model based on

structural probability, to accelerate Eusolver.
• NGDS [Kalyan et al. 2018], a synthesizer combing a neural network with PROSE. Instead of

structural probability used in MaxFlash, NGDS uses a scoring function conditioned on input-

output constraints: For each subproblem (s,A) in PROSE, NGDS uses a neural network to score

each possible form according to A, and then use the score to guide synthesis.
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Besides, we also take Atlas [Wang et al. 2018a], a state-of-the-art solver in terms of performance

reported in its publication, into account. Atlas is based on abstraction refinement, which reduces

the number of subproblems by abstraction and thus boosts the efficiency of synthesis

Benchmarks. We evaluate MaxFlash over two domains: string manipulation and matrix transfor-

mation.

• String. We use the string datasetDS collected by Lee et al. [2018].DS is comprised of 205 string

manipulation benchmarks, collected from 108 string-related benchmarks in SyGuS competition,

37 questions by spreadsheet users in StackOverflow, and 60 articles about Excel programming

in Exceljet. For each benchmark, a grammar and a set of examples are provided: the number of

examples varies from 2 to 400, with an average number of 42.8. For some benchmarks in DS,

oracle programs are provided, which can be used for training. The oracle program is the program

found by Eusolver. For those benchmarks which Eusolver cannot solve within 10 minutes, no

oracle program is provided: these benchmarks will be ignored while training the model.

• Matrix. We use the matrix dataset DM collected by Wang et al. [2018b]. DM is comprised of 39
matrix transformation benchmarks, which are collected from StackOverflow and MathWorks.

For each benchmark, a single input-output example is provided: the number of entries in the

input matrix varies from 6 to 640, with an average number of 73.5. 29 out of these benchmarks

involve matrices of dimension greater than 2. For each benchmark inDM, an oracle program is

provided, which can be used for training.

Configurations. All of the following experiments are conducted on Intel Core i7-8700 3.2GHz

6-Core Processor with 48GB of RAM. For each execution, MaxFlash synthesizes programs from

the grammar provided in the benchmark and takesM1 as the topdown context model (defined in

Section 5) by default. For all baseline solvers which utilize neural networks, we train models and

conduct the experiments on GeForce GTX 1080Ti. For all instantiations of PROSE, we run them

on PROSE SDK version 7.16.0, released on July 27th, 2020. All of the executions in the following

experiments are under a time limit set to 5 minutes and a memory limit set to 8 GB.

6.2 Exp 1: Comparison of the Approaches (RQ1)
Procedure. Over the string manipulation domain, we compare MaxFlash with Eusolver, CVC4,
PROSE, Atlas, Euphony, and NGDS. Due to the differences between the baseline solvers, the experi-

ment settings are slightly different:

• Eusolver and CVC4. These baseline solvers do not require a training set. To compare our approach

with these three baseline solvers over all 205 benchmarks DS, we train MaxFlash via leave-one-

out cross-validation, i.e., for each benchmark inDS, the TPM used by MaxFlash is trained from

all other benchmarks in DS.

• PROSE. We compare two different instantiations of PROSE over the string manipulation domain:

(1) TText, a closed-source tool on a fixed unpublished domain-specific language, representing

the best performance of PROSE on string manipulation domain. In this experiment, we compare

MaxFlash with TText contained in PROSE SDK version 7.16.0. (2) An instantiation of PROSE on

the SyGuS grammar, providing a fair comparison between PROSE and MaxFlash on a fixed DSL.

When instantiating PROSE on the SyGuS grammar, we contacted the PROSE group and they

verified the correctness of some critical points in our implementation. We compareMaxFlashwith
these two instantiations over all 205 benchmarks inDS, and use leave-one-out cross-validation

to train the TPM for MaxFlash.
• Euphony and NGDS. These approaches require a set of benchmarks to train prediction models.

Therefore, we split DS into a training set and a testing set: For each approach, the prediction

model is trained on the training set, and only the results on the testing set are recorded. We
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split DS in the same way as Euphony [Lee et al. 2018] does: The training set and the testing set

contain 123 and 82 benchmarks respectively. We do not use leave-one-out cross-validation here

because (1) the implementation of Euphony crashed on a different training set; (2) training the

neural network used in NGDS is time-consuming. Note that since we use the same training set as

Euphony does, we directly use the trained prediction model published with the implementation

of Euphony.
Since the implementation of NGDS is not available, we re-implement it according to its pa-

per [Kalyan et al. 2018], and carefully choose the missing parameters: (1) For the hyperparameters,

we evaluate ten different settings and select the one with the best performance. Specifically, we

set the embedding dimension of chars to 128, the hidden size of the LSTM to 256, the number

of the layers in LSTM to 3, and the size of the last hidden layer to 256. (2) For the scoring

function on programs, we take it as the size of a program, i.e., our implementation aims to find

the correct program with a smaller size. Besides, since NGDS is designed only for synthesizing

from a single example, we use the structure proposed by Devlin et al. [2017] to extend it to

support multi-examples and use CEGIS to reduce the number of examples dealt by NGDS.
• Atlas. Atlas is built on a fixed grammar which contains fewer operators than the grammar

provided in the benchmarks. For fairness, we instantiateMaxFlash on the grammar used by Atlas,
and compare it with Atlas. Besides, since the grammar is changed, we recalculate the oracle

programs for benchmarks in DS by running MaxFlash with a trivial prediction model: all rules

always have the same probability. This comparison uses all 205 benchmarks in DS and also uses

leave-one-out cross-validation to train the prediction model for MaxFlash.

Over the matrix transformation domain, since Eusolver, Euphony, CVC4, and NGDS cannot be
applied to the matrix transformation domain directly, we compare MaxFlash with two baseline

solvers: Atlas and an instantiation of PROSE (denoted as PROSEM). Since both solvers do not require

a training set, we use leave-one-out cross-validation to train the prediction model for MaxFlash.
One delicate point is that DS contains redundant benchmarks: some benchmarks are the same

except the number of examples. Therefore, while performing leave-one-out cross-validation, if the

examples of a benchmark is a superset or subset of the test benchmark, this benchmark will be

excluded from the training set. In DM, there is no redundant benchmark. Such a treatment is also

performed in other experiments in this section.

In this experiment, we measure the number and the ratio of solved benchmarks for each syn-

thesizer with two different time limits: the first one is 500 milliseconds, which represents the

industrial requirement of a user-interacting PBE system [Polozov and Gulwani 2016]; the second

one is 5 minutes, which is large enough to show the general synthesis ability. We also measure the

size of the memory required by each synthesizer to solve each benchmark: For each execution, a

background process is used to monitor its memory usage and report the spike.

Results. The results are summarized in Table 2 while more details are drawn as Figure 4a and

Figure 4b. To compare the time cost, we record the average speed-up ratio of MaxFlash to each

baseline solver. More concretely, in each comparison, for each benchmark solved by both MaxFlash
and the baseline within 5 minutes, we record the ratio of the time cost of the baseline solver to

the time cost of MaxFlash. The geometric mean of all these ratios is shown in the eighth column

while the ninth line shows the geometric mean of only hard benchmarks: a benchmark is hard

iff either the baseline or MaxFlash takes more than 0.5s on it. To compare the memory usage, in

each comparison, for each benchmark solved by both MaxFlash and the baseline solver within 5
minutes, we record the ratio of the memory usage ofMaxFlash to the memory usage of the baseline

solver. The geometric mean of these ratios is listed in the tenth column. We shall compare the time

cost at first, following with a discussion on memory usage.
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Table 2. The results of comparing MaxFlash with baselines.

Baseline D |Dtest |
#Solved in 500ms #Solved in 5min Speed-up Memory

MaxFlash Baseline MaxFlash Baseline All Hard Cost

Eusolver

DS

205
143(70%)

63(31%)
174(85%)

111(54%) ×49.13 ×126.2 35.63%

PROSES 0(0%) 94(46%) ×406.8 ×406.8 2.551%

CVC4 123(60%) 174(85%) 196(96%) ×5.097 ×8.670 66.53%

TText 143(70%) 154(75%) 174(85%) 197(96%) ×4.107 ×1.148 17.05%

Atlas 130(63%) 115(56%) 132(64%) 125(61%) ×23.34 ×95.98 3.883%

Euphony
82 43(52%)

9(11%)
58(71%)

23(28%) ×38.16 ×55.30 37.26%

NGDS 0(0%) 18(22%) ×1043 ×1043 23.10%

PROSEM
DM 39 34(87%)

0(0%)
39(100%)

33(85%) ×2080 ×2080 8.137%

Atlas 29(74%) 38(97%) ×15.50 ×3.663 3.776%

Comparing with Eusolver and Euphony over the string manipulation domain, MaxFlash not only

solves many more benchmarks but also achieves a significant speed-up.

Comparing with PROSE, a state-of-the-art framework for dynamic-programming-based syn-

thesizer, MaxFlash performs significantly better when both MaxFlash and PROSE are instantiated

on the same grammar over both domains. However, the performance of PROSE can be greatly

improved by a well-designed DSL: TText solved more benchmarks than MaxFlash whenever the

time limit is 500 milliseconds or 5 minutes. We suspect that TText solves many more benchmarks

because its DSL contains more powerful language constructors and witness functions such as

regex, which make some hard benchmarks in DS much simpler. For example, on univ_4.sl, a
benchmark on which both PROSES and MaxFlash failed but TText succeeded, TText uses regex
‘‘egexPair((‘,’ or ‘and’) + ‘Upper Case’, ‘ϵ’)" to capture two cases, starting with ‘,’
and starting with ‘and’, at the same time. However, in the SyGuS grammar, regex is unavailable,

and thus a program has to use if-condition to deal with these cases, resulting in a program that is

at least 2 times larger in size. This result suggests that a re-implementation of MaxFlash on the DSL

used by TText may potentially achieve a better performance. Please note that even though TText is
built on a much more powerful DSL, MaxFlash still achieves an average speed-up equal to ×4.107
on benchmarks solved by both TText and MaxFlash.
Comparing with NGDS, MaxFlash significantly outperforms it over the string manipulation

domain. MaxFlash has two critical differences against NGDS: (1) The default prediction model M1

used by MaxFlash is much more lightweight than the neural network used by NGDS, allowing
MaxFlash to explore more subproblems within the same time limit; (2) Comparing with the search

algorithm used by NGDS, MaxFlash further utilizes heuristic functions and iterative deepening

search, making MaxFlash more effective on cutting off useless search branches. In this experiment,

our results are significantly different from the results reported by Kalyan et al. [2018]. Such a

difference is caused by the difference in the experiment setting: In the experiment conducted

by Kalyan et al. [2018], for each benchmark, only one example is provided to NGDS, while in our

experiment, all examples are provided. Therefore, we further perform an experiment in which only

the first example in each benchmark is considered. The results show that the performance of NGDS
is greatly improved: NGDS finishes 41(50%) benchmarks within 5 minutes. But even comparing

with the new results, MaxFlash still solves 17(21%) more benchmarks with an average speed-up

equal to ×554.6 on benchmarks solved by both MaxFlash and NGDS.
Comparing with Atlas, MaxFlash solves more benchmarks with faster speeds over both domains.

Furthermore, over the string manipulation domain, Atlas is more limited than MaxFlash: Atlas is
built on a fixed simple grammar and it is not clear how to extend its algorithm to the grammar
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(a) Results of Exp 1 on DS

(b) Results of Exp 1 on DM. (c) Results of Exp 2 on DS. (d) Results of Exp 2 on DM.

(e) Results of Exp 3 on DS and DM respectively. (f) Results of Exp 4 on DS and DM respectively.

Fig. 4. The results of four experiments. For each approach, we sort its solved benchmarks in the increasing
order of the time cost, and plot the ith benchmark as a point (i, ti ) where ti is the time cost.

used in SyGuS. In contrast, MaxFlash can solve more benchmarks with the SyGuS grammar. Over

the matrix transformation domain, MaxFlash outperforms Atlas on both time cost and the number

of solved benchmarks, but on hard benchmarks, its advantage is not as significant as inDS. The

reason is that two extra reuse mechanisms in MaxFlash involve multi-example subproblems, but

every benchmark in DM contains only one example. Therefore, both of them are less effective in

DM than DS.

Comparing with CVC4, MaxFlash still has an obvious speed-up and has a better performance

when the time limit is 500ms, which demonstrates that MaxFlash performs better than CVC4 in
user-interacting scenarios. When the time limit is 5 minutes, CVC4 solves 22 more benchmarks

than MaxFlash. We investigated the results of other solvers and found most of them (19/22) cannot
be solved by any other solver. One possible reason is that CVC4 is built inside a constraint solver
and could utilize specific theory solvers, which are probably critical to some benchmarks. Note

that even though CVC4 utilizes the theory solvers,MaxFlash still performs much faster on the tasks

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 224. Publication date: November 2020.



Guiding Dynamic Programing via Structural Probability for Accelerating Programming by Example 224:23

that are solved by both synthesizers, and works significantly better than CVC4 within 500ms, the

interaction limit.

Besides, we also compared the synthesized programs of MaxFlash with CVC4 and found that

MaxFlash could synthesize much simpler programs than CVC4: over the 171 benchmarks solved by

both MaxFlash and CVC4, the programs found by MaxFlash uses 5.111 operators on average while

the programs found by CVC4 uses 124.4 operators on average. Moreover, the programs found by

MaxFlash are often more natural than programs found by CVC4. For example, on 38871714.sl, a
benchmark aims to remove all angle brackets from the input string, the program found byMaxFlash
is (str.replace (str.replace input ">" "") "<" ""), which is much more natural than

the program found by CVC4, a program uses 159 operators. The reason for this difference is

becauseMaxFlash always finds the most probable program according to a model based on structural

probability, while CVC4 only returns an arbitrary program that is consistent with all examples.

In terms of memory usage, though MaxFlash uses two memoization tables to reuse results, it still

uses less memory space than all baselines. This is because the advanced search algorithm together

with structural probability can effectively prune off subproblems, and thus only a small portion of

subproblems is cached in the memoization tables. As for baseline solvers, they can be divided into

two categories according to whether subproblems are used:

• The first category contains PROSE,Atlas, and NGDS, in which visited subproblems are recorded:

Both PROSE and Atlas require a lot more memory space than MaxFlash. This is because PROSE
always memorizes all possible subproblems; Altas uses an abstraction space to reduce the number

of possible subproblems but it would still memorize all possibilities. Comparing with them,

NGDS requires less memory because it uses a prune-off strategy to reduce the number of visited

subproblems. However, according to the result, NGDS memorizes many more subproblems than

MaxFlash does, implying the advantage of our search algorithm.

• The second category contains Eusolver,CVC4, and Euphony, in which other information is mem-

orized instead of subproblems: Eusolver and Euphony stores all visited partial subprograms; CVC4
records clauses learned from conflicts as an SMT solver. Though the result suggests that these

approaches have advantages on the memory usage against those based on subproblems,MaxFlash
still outperforms them with the help of the search algorithm and structural probability.

6.3 Exp 2: Comparison of Prediction Models (RQ2)
Procedure. In this experiment, we test how the choice of the prediction model affects the perfor-

mance of MaxFlash. Here we consider three different topdown context models:M0,M1, andM2

(defined in Section 5). We train each topdown prediction model as discussed in Section 5 and use

leave-one-out cross-validation to get the training set.

In addition, we compare TPM with DeepCoder [Balog et al. 2017], a state-of-the-art framework

for using neural networks to guide programming-by-example. DeepCoder trains a neural network
from random programs, and use it to predict the probability for each operator to be used (i.e.,

generates an M0 model) from some given input-output examples. DeepCoder can be combined

with the search algorithm in MaxFlash and in this experiment, we consider two different ways of

combining DeepCoder with MaxFlash.

• Statically (denoted asDeepCoderS). For each benchmark, we firstly invokeDeepCoder to generate
anM0 model, and then use it to guide MaxFlash.
• Dynamically (denoted as DeepCoderD). For each benchmark, we invoke MaxFlash with context

modelM0 before determining the prediction model. Then for each subproblem (s,A, c ) visited
by MaxFlash, we invoke DeepCoder to generate a prediction specifically for it from A.
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We re-implement Deepcoder according to its paper [Balog et al. 2017] as its implementation is

not published. Besides, since the neural network used by DeepCoder cannot be easily extended to

the matrix transformation domain, we only instantiated DeepCoder over the string manipulation

domain and measured the performance of DeepCoderS and DeepCoderD on dataset DS.

Results. For each prediction model, we calculate the geometric mean of per-task speed-up ratios

of MaxFlash with the default model (the ratio of the time cost of MaxFlash with each prediction

model to that of MaxFlash with M1). The results are summarized in Table 3 while more details are

drawn as Figure 4c and Figure 4d.

Table 3. The results of different prediction models.

Prediction Model

DS DM
#Solved Average Speed-up #Solved Average Speed-up

500ms 5min All Hard 500ms 5min All Hard

M0 134 164 ×1.618 ×6.124 23 39 ×6.791 ×10.52

M1 (Default) 143 174 ×1.000 ×1.000 34 39 ×1.000 ×1.000

M2 139 171 ×2.571 ×2.975 33 39 ×1.428 ×1.873

DeepCoderS 140 163 ×7.561 ×2.027

DeepCoderD 98 158 ×21.99 ×20.51

M1 performs best among all three topdown context modelsM1 outperformsM0 because the

context inM1 is more refined which makes the prediction model more precise.M1 outperforms

M2 because of the following two reasons:

(1) The training set is small and the training method is straight-forward, therefore M2 may overfit

on the training set, sinceM2 is more complex than M1.

(2) The context set ofM2 is larger thanM1. Thus there are more subproblems forM2 thanM1. The

advantage of using a more complex prediction model is not enough to counter the disadvantage

of having more subproblems.

The result suggests that the size of the context model affects the efficiency of MaxFlash on two

sides. An ideal prediction model forMaxFlash should not only be precise but also use a small number

of contexts. Furthermore, the difference between different context models is much smaller than

the difference between MaxFlash and most baselines solvers, indicating the overall effectiveness of

MaxFlash.
Comparing with DeepCoder, the default modelM1 performs better than both DeepCoderS and

DeepCoderD: DeepCoderD performs the worst, while the performance of DeepCoderS is closer to that
ofM1. This difference is because DeepCoderS and DeepCoderD use the neural network differently:

DeepCoderS invokes the network only once, while DeepCoderD invokes the network for each differ-

ent subproblem. Therefore, this result demonstrates that reducing the time cost of the prediction

model is critical to accelerating programming-by-example, implying the advantage of structural

probability and TPM. Note that in this experiment, both DeepCoderS and DeepCoderD are built on

MaxFlash: they have already benefited from the search algorithm proposed in this paper.

6.4 Exp 3: Comparison of the Number of Training Datas (RQ3)
Procedure. In this experiment, we test whether the performance of MaxFlash is sensitive to the

number of training data.

In previous experiments, we use leave-one-out (LOO) cross-validation to train the prediction

model forMaxFlash by default. In this experiment, we further consider two cross-validationmethods:

2-fold cross-validation and 5-fold cross-validation. The procedure of n-fold cross-validation is: (1)
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randomly divide the dataset inton subsets, (2) for each subset, the predictionmodel used byMaxFlash
is trained on benchmarks from all other subsets. Therefore, 2-fold and 5-fold cross-validation use

50% and 20% fewer training data than leave-one-out cross-validation respectively.

For each cross-validation method, we run MaxFlash on all benchmarks in both datasets and

measure the time costs.

Results. The results are summarized in Figure 4e . These two figures show that the size of the

training set has a positive impact on the performance of MaxFlash, especially for hard benchmarks.

This result shows that MaxFlash could perform even better when more training data is provided.

On the other hand, the impact of training data is not significant. After reducing the number

of training data by 50%, MaxFlash only becomes 9.11% and 0.85% slower in average on DS and

DM respectively. Just as shown in Section 6.2, comparing to the advantages of MaxFlash to other

baseline solvers, such a loss is much smaller. This result demonstrates that even under the lack of

training data, MaxFlash can still perform well.

6.5 Exp 4: Effects of Optimizations (RQ4)
Procedure. In this experiment, we test whether the two reuse mechanisms (reusing through

heuristic function, reusing results with fewer constraints) speed up MaxFlash.
Here, we further implement two weakened solvers MaxFlash−H , MaxFlash−M , which disable

reusing through heuristic function, reusing results with fewer constraints from MaxFlash respec-

tively. We run these three solvers on all benchmarks inD and still use leave-one-out cross-validation

to train the prediction model.

Results. For each reuse mechanism, we calculate the geometric mean of the per-task speed-up

ratios (the ratio of the time cost of the weakened solver to that of MaxFlash). The results are

summarized in Table 4 while more details are drawn as Figure 4f.

Table 4. The results of disabling each optimization module.

Disabled Module

DS DM
#Solved Average Speed-up #Solved Average Speed-up

500ms 5min All Hard 500ms 5min All Hard

Heuristic Function 96 134 ×8.193 ×116.1 29 39 ×2.253 ×5.628
Fewer Constraints 114 162 ×3.252 ×24.01 34 39 ×1.000 ×1.000

As shown in Table 4, over the string manipulation domain, both two reuse mechanisms boost the

speed of MaxFlash significantly. Comparing between them, the effect of reusing through heuristic

function is more obvious, because it not only utilizes the relationship between subproblems, but

also helps to reuse all failed results. Besides, reusing through heuristic also produces a more precise

heuristic function, which can help MaxFlash to prune off more search branches.

Over the matrix transformation domain, the second reuse mechanism does not work. The reason

is that each benchmark in DM contains only a single example, and thus all optimizations for multi-

example subproblems become useless onDM. Even though, reusing through heuristic function still

achieves a considerable speed-up, as shown in Table 4.

7 RELATEDWORK
Accelerating program synthesis. There have been lots of techniques proposed to accelerate

program synthesis. We summarize the techniques adopted by state-of-the-art solvers below:

• Dynamic-programming based synthesizers [Barowy et al. 2015; Gulwani 2011; Kini and Gulwani

2015; Le and Gulwani 2014; Padhi et al. 2018; Polozov and Gulwani 2015; Singh and Gulwani
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2012], represented by FlashFill [Gulwani 2011], is closely related to MaxFlash, which also uses

witness functions to divide synthesis tasks into subprograms and uses dynamic programming

to speed up synthesis. FlashFill has been integrated into PROSE [Polozov and Gulwani 2015], a

framework for dynamic-programming-based synthesizers, and has been constantly evolving as

tool Transformation.Text.
• Probabilistic-model based synthesizers [Lee et al. 2018], represented by Euphony [Lee et al. 2018],

model the probability for a program to be used as a probabilistic model and thus utilize structural

probability to guide the synthesis. Euphony utilizes a probabilistic model based on structural

probability, named PHOG, to accelerate an enumerative-based synthesizer, and thus achieves a

significant speed-up.

• Divide-and-conquer based synthesizers [Alur et al. 2017b], represented by Eusolver [Alur et al.
2017b], models if-statements as decision trees, and uses a divide-and-conquer algorithm to

synthesize predicates and branch expressions separately.

• Abstraction refinement based synthesizers [Wang et al. 2018a,b], represented by Atlas [Wang et al.

2018a], abstract the constraints to an abstraction space and thus reduce the number of possible

search states. The effectiveness of abstraction heavily dependent on the DSL: All existing works

are built on simple DSLs.

• Refutation based synthesizers [Reynolds et al. 2019a,b], represented by CVC4 [Reynolds et al.
2019a], utilize an algorithm named counterexample-guided quantifier instantiation [Reynolds et al.

2015] to synthesize programs from unsatisfiability proofs given by the theory solvers. Relying on

efficient theory solvers, these synthesizers could finish some tasks which are extremely hard for

other techniques.

MaxFlash combines the first two techniques. We have evaluated MaxFlash against state-of-the-art

solvers of all these directions in Section 6. The result demonstrates that MaxFlash achieves a faster

speed than all these approaches for interactive tasks. Besides, it is remained as future work to

study whether theory solvers and abstraction refinement can be utilized in MaxFlash, since these
techniques optimize different aspects of program synthesis.

Program estimation. Program estimation [Xiong et al. 2018] is a problem related to program

synthesis where the goal is not only to find a program satisfying the specification but also a program

that is most likely under a context, such as a natural language description. This problem is also

recognized as multi-layer specification problem [Chen et al. 2019] or multi-modal synthesis [Chen

et al. 2020] in literature. Though program estimation approaches also utilize a probabilistic model

and optimize the probability of the resulting program, their goal is different from acceleration,

making their approaches difficult to be directly used for acceleration.

• Some approaches [Chen et al. 2019; Neelakantan et al. 2017] use natural language descriptions as

context, which is not available when accelerating PBE.

• While some approaches [Balog et al. 2017; Devlin et al. 2017; Kalyan et al. 2018; Menon et al. 2013]

use input-output examples as context, their probabilistic models are computationally complex

because (1) examples are not easy to encode, and (2) it is more desirable to use a complex model

to achieve better accuracy. As a result, evaluating the probabilistic model becomes a bottleneck

of their performance, and thus prevents them from achieving significant speed-ups.

NGDS [Kalyan et al. 2018] and DeepCoder [Balog et al. 2017] are two state-of-the-art approaches

in this category. Both of them use neural networks to predict from input-output examples: NGDS
uses a neural network to score each possible form for each subproblem, and use a basic branch-

and-bound to prune off search branches; DeepCoder uses a neural network to generate anM0

model, and uses it to guide the synthesis process of a client program synthesizer. Comparing with

them,MaxFlash is different in the following aspects: (1) Training a topdown prediction model does
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not require any domain knowledge, making MaxFlash easily applicable to different domains. (2)

Evaluating a d-gram topdown prediction model is much faster than evaluating a neural network,

allowing MaxFlash to explore more subproblems within the same time limit. (3) Comparing with

the basic branch-and-bound used in NGDS, the search algorithm inMaxFlash utilizes more search

strategies and is potentially more effective on pruning off useless search branches. We have

established a detailed comparison between MaxFlash and these two approaches in Section 6. The

result demonstrates that MaxFlash outperforms both of them on speed.

Probabilistic models based on structural probability. There have been several existing proba-

bilistic models based on structural probability. We summarize some representative models below:

• AST n-gram constitutes a proper subset of topdown prediction models: An AST n-gram model

can be regarded as a topdown prediction model with context model Mn (defined in Section 5).

• Hidden Markov model: A topdown prediction model is a special Hidden Markov model capturing

the tree-path information from the root to the current vertex.

• PHOG [Bielik et al. 2016] constitutes a proper superset of topdown prediction models. A PHOG
model uses a domain-specific language to extract contexts from the whole partial program, while

a topdown prediction model only considers the path from the root. However, it would be hard

to combine PHOG with dynamic programming since the context model in PHOG allows sibling

subproblems to be dependent on each other.

• code2vec [Alon et al. 2019] also constitutes a proper superset of topdown prediction models. A

code2vec model encodes AST paths into real-valued vectors instead of a finite set. However, it

would also be hard to combine code2vec with dynamic programming since the number of possible

contexts in code2vec is infinite, leading to an extremely large number of different subproblems.

8 CONCLUSION
We propose MaxFlash, a novel PBE framework, which uses topdown prediction models, a kind

of probabilistic models based on structural probability, to guide a search based on dynamic pro-

gramming. MaxFlash uses a series of methods to resolve two major challenges in combining these

two techniques. To make local subproblems aware of structural probability, MaxFlash involves a

topdown context and a probability lowerbound to subproblems. The context makes the structural

probability calculable in subproblems, and the lowerbound helps MaxFlash to avoid improbable

subproblems. To increase the chance of reusing results, MaxFlash turns the subproblems into

optimization problems. Besides, to prune off search branches, MaxFlash uses an efficient search

algorithm based on iteratively deepening search and branch-and-bound. To further boost the

opportunities of reuse, MaxFlash involves two novel reuse mechanisms, reusing through heuristic

function and reusing results with fewer constraints. We instantiate our framework over the string

manipulation domain and the matrix transformation domain, and compare it with other state-of-

the-art PBE synthesizers. Our results show that MaxFlash achieves ×4.107 − ×2080 speed-ups

against these synthesizers on 244 real-world tasks.
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A APPENDIX
To prove Theorem 4.3, we involve the concept of Synthesis State. A synthesis state S is comprised of

a subproblem problem, a probability limit lowerbound, a global memoization table memoTable and
the auxiliary memoization tablememoTableh for the heuristic function. A synthesis state represents

an invocation OptimalProgram(problem, lowerbound) under memoization table memoTable and
memoTableh . Clearly, whenmemoTable andmemoTableh is given, the procedure of OptimalProgram(·)
is fixed. We denote its return value as p (S).

We define the property correct for synthesis state S, memoization table memoTable and auxiliary

memoization table memoTableh :
• A synthesis state S = (problem, lowerbound,memoTable,memoTableh ) is correct ⇐⇒ if the

log-probability of the most probable program proдram∗ of problem is larger than lowerbound,
p (S) = proдram∗, otherwise p (S) = ⊤.
• The memoization table memoTable is correct ⇐⇒ for any subproblem problem in memoTable,
memoTable[problem] is the most probable program of subproblem problem.

• The auxiliary memoization tablememoTableh is correct ⇐⇒ for any subproblem problem in

memTableh , memoTableh [problem] ≥ bestProb(problem).

Lemma A.1. If memoTableh is correct, heuristic must be a valid heuristic function, i.e., for any
subproblem problem, heuristic(problem) is no smaller than bestProb(problem).

Proof. Suppose problem = (s,A, c ). According to Section 4.1, heuristic (problem) is equal to
min(heuristic0 ((s,A, c )),minA′ prefix of AmemoTableh [(s,A′, c )]). By correctness ofmemoTableh and

Lemma 3.9, for any prefix A′ of A:

memoTableh [(s,A′, c )] ≥ bestProb (s,A′, c ) ≥ bestProb (s,A, c )

Since heuristic0 is a valid heuristic function, we get the validity of heuristic, i.e., bestProb(problem) ≤
heuristic(problem). □

While synthesizing, MaxFlash invokes OptimalProgram many times. These invocations form

some recursion trees: each recursion tree representing one iteration of the iteratively deepening

search. To prove the correctness of MaxFlash, we only need to prove the invocations of Optimal-

Program are always correct.

LemmaA.2. For any synthesis state S = (problem, lowerbound,memoTable,memoTableh ), if memoTable,
memoTableh are correct, then:
• memoTable and memoTableh will aways be correct during OptimalProgram(problem,lowerbound).
• Synthesis state S will be correct.

Proof. We prove it by structural induction on the recursion tree. Suppose all the recursive

invocation of OptimalProgram(S, lowerBound) satisfies this property, we nowprove this invocation

itself also does. Note that the following proof is also held for the base case: since the base case

have no self invocation, applying the following proof to base cases does not utilize the induction

hypothesis.

Let p+ (to distinguish it from bestProgram used in Algorithm 6) be the optimal program to

problem. We discuss according to the return position of OptimalProgram(problem,lowerBound) in

Algorithm 7:

• Return at Line 10 in Algorithm 4. By Lemma ??, heuristic(problem) ≥ bestProb(problem).
Therefore, if OptimalProgram(·) returns at this time, there must not be any valid program for

problem with log-probability at least lowerbound. Besides, OptimalProgram does not modify

memoTable,memoTableh in these case. Therefore, S,memoTable,memoTableh are all correct.
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• Return at Line 7 in Algorithm 3. Since memoTable is correct, returning memoTable[problem]
directly must also be correct for problem.

• Return at Line 8 or Line 12 in Algortihm 7. Let probleml be the recursively invoked sub-

problem. By the induction hypothesis, candidate is correct, and memoTable,memoTableh are still

correct after this invocation. There are two possible cases:

– candidate is ⊤. Then bestProb(problem) ≤ bestProb(probleml ) ≤ lowerbound. Therefore, it’s
correct for OptimalProgram(·) to return ⊤.

– candidate is not ⊤ and candidate satisfies the last constraint. At this time, candidate
passes all the constraints, therefore candidate is a valid program for problem. Then, by Lemma

3.9, Pc [candidate] ≤ bestProb(problem) ≤ bestProb(probleml ) = Pc [candidate], so candidate is
also the most probable program to problem. Therefore it’s correct for OptimalProgram(·) to
return candidate.

• Return at Line 18 of Algorithm 6. Firstly, we show the value of bestProgram is always either

⊤ or a valid program to problem. Every time OptimalProgram(·) updates bestProgram, the

new program candidate must be the most probable program to some scheme. By the induction

hypothesis, each subprogram of candidate must satisfies the input-output constraint of the

corresponding subproblem. Therefore, candidate must valid for problem.

Next, we demonstrate that if bestProb(probblem) > lowerbound, the optimal program p+ must be

used to update bestProgram during OptimalProgram(problem,lowerbound). Since bestProbability
is either lowerbound or the log-probability of some program, when p+ is found, bestProbability
should be strictly smaller than Pc [p

+]. At this time, p+ will be used to update bestProgram.

Therefore, if bestProb(problem) > lowerbound, bestProgram must be updated to p+ at some time,

and it must not be replaced by other programs since OptimalProgram(·) uses only valid program
to update bestProgram. On the other hand, if bestProb(problem) ≤ lowerbound, bestProgram
will never be updated since no valid programs has log-probability larger than lowerbound. In
conclusion, synthesis state S is correct at this time.

FormemoTable, OptimalProgram(·) only updates it at Line 13 of Algorithm 6. Since S is correct,
bestProgrammust be the most probable programp+ at this time. Therefore this update tomemoTable
is valid, i.e., memoTable remains correct.

FormemoTableh , OptimalProgram(·) uses bestProbability or lowerbound to updatememoTableh .
Since S is correct, if the most probable program is found, bestProbability should be equal to Pc [p

+],
i.e., bestProb(problem); if not, lowerbound should be larger than bestProb(problem). In both cases,

memoTableh remains correct after this update. So far, we have discussed all possible cases and thus

proved this lemma.

□

Now, we are ready to prove the main theorem.

Theorem A.3 (Theorem 4.3). Given a PBE task and a topdown prediction model P, letV be the set
of all valid programs, the program program∗ synthesized by MaxFlash always satisfies (1) validity:
program∗ ∈ V , (2) optimality: ∀program ∈ V ,P[program] ≤ P[program∗].

Proof. Since the initial values of memoTable and memoTableh are both empty, at beginning,

memoTable and memoTableh are both correct.

Then by Lemma ??,memoTable,memoTableh and all synthesis states are all correct during the

synthesis process. Therefore, the synthesized program must satisfy all examples and have the

largest possible probability. □
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