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In this paper, we propose an automated approach to finding correct and efficient memoization algorithms
from a given declarative specification. This problem has two major challenges: (i) a memoization algorithm
is too large to be handled by conventional program synthesizers; (ii) we need to guarantee the efficiency of
the memoization algorithm. To address this challenge, we structure the synthesis of memoization algorithms
by introducing the local objective function and the memoization partition function and reduce the synthesis
task to two smaller independent program synthesis tasks. Moreover, the number of distinct outputs of the
function synthesized in the second synthesis task also decides the efficiency of the synthesized memoization
algorithm, and we only need to minimize the number of different output values of the synthesized function.
However, the generated synthesis task is still too complex for existing synthesizers. Thus, we propose a novel
synthesis algorithm that combines the deductive and inductive methods to solve these tasks. To evaluate
our algorithm, we collect 42 real-world benchmarks from Leetcode, the National Olympiad in Informatics in
Provinces-Junior (a national-wide algorithmic programming contest in China), and previous approaches. Our
approach successfully synhesizes 39/42 problems in a reasonable time, outperforming the baselines.
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1 INTRODUCTION

Combinatorial Problems (CPs). CPs are an essential category of problems that concerns a discrete
set of solutions [Schrijver 2003], such as the 01 Knapsack problem [Kellerer et al. 2004], or the
longest common subsequence problem [Maier 1978]. It has important applications in various
domains. In general, CPs have three major types of problems:
• (Decision) Finding any valid solution.
• (Optimization) Searching for the best valid solution.
• (Counting) Counting the number of valid solutions.
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Difficulty of Solving CPs. These problems are generally difficult to solve because the number of
solutions is tremendous. As a result, we cannot simply enumerate every solution and must design
specialized algorithms to solve CPs efficiently.

Dynamic programming (DP) and Memoization. DP is a powerful and widely-used algorithmic
approach to solving CPs efficiently [Aho and Hopcroft 1974; Cohen 1983; Cormen et al. 2009]. To
design a DP algorithm, we need first to discover hidden structures in the given CP, which requires
human insights. Once we have discovered the hidden structures, we could implement DP in a
top-down or bottom-up style, and the top-down approach is also termed memoization. Intuitively,
it stores the results of previous invocations and reuses them when some cached invocation is called
again. Typically, it exploits the structure of the costly enumeration algorithm and could be obtained
by modifying the enumeration procedure.

Our result. Motivated by the importance of CPs and dynamic programming, we propose an
automated approach to synthesizing efficient memoization algorithms in this paper. We implement
our approach into the tool SynMem. SynMem requires the user to provide a high-level declarative
specification of CPs. The user needs to encode the solution as variables and the validity condition
of the solution as logic constraints. For optimization problems, the user needs to provide an
additional objective function over variables. Such a specification is widely considered as natural for
specifying CPs [Adelsberger 2003; Barták 1999]. The output of SynMem is a program representing
the synthesized memoization algorithm, which is ensured to be in pseudo-polynomial time.

Existing approaches. There are existing approaches for synthesizing DP algorithms. However, as
we know, all existing approaches target a specialized subclass of dynamic programming algorithms
and cannot solve many classic problems. For example, Pu et al. [2011]’s approach only supports
DP algorithms that use a fixed number of scalar variables for memoization and thus cannot solve
the classic 0-1 knapsack problem [Kellerer et al. 2004]; Lin et al. [2021]’s approach does not allow
constraints over individual components of the solution, and thus cannot solve the classic longest
increasing subsequence problem [Schensted 1961]. More details can be found in Section 7.

Challenges. Hence, it is worth considering automatically synthesizing a memoization algorithm
from declarative specifications that applies to various combinatorial problems. However, there are
two major challenges.

• Scalability. A memoization algorithm is large and is beyond the scalability of existing general
program synthesizers.
• Efficiency. Most existing program synthesis approaches are designed for functional correctness
and do not guarantee the efficiency of the generated program.

Key insights. We take two novel steps to address these challenges.
Step 1. First, we structure the synthesis of memoization algorithms by introducing two concepts,

namely the local objective function and the memoization partition function. Our structuring
incorporates a significantly broader class of memoization algorithms than previous works [Lin
et al. 2021; Pu et al. 2011] and captures two fundamental properties of dynamic programming: the
optimal substructures and the overlapping subproblems [Cormen et al. 2009].
By the structuring and a sequence of reductions, we reduce synthesizing the memoization

algorithms to two independent tasks on inductive quantified relational program synthesis [Wang
et al. 2018], namely, synthesizing a local objective function (LOF) and synthesizing a memoization
partition function (MPF). Each task synthesizes a smaller program fragment. After solving both
tasks, we obtain a complete memoization algorithm whose efficiency is controlled by the range of
the MPF. The advantages of this step are two-fold.
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• First, both tasks produced by this step target a smaller program fragment. Furthermore, the
independence between the tasks enables us to solve them separately, yielding an efficient
synthesis procedure. This addresses the scalability issue.
• Second, it is hard to synthesize a large program with efficiency guarantees. We reduce control-
ling the efficiency of the whole memoization algorithm to minimize the range of the function
synthesized in the second task. This address the efficiency issue.

Step 2. The specifications of the two synthesis tasks are too complex to be handled by the state-
of-the-art solver on the relational program synthesis [Wang et al. 2018]. Thus, we propose a new
synthesis algorithm combining inductive and deductive methods. We also use a heuristic method
to optimize the range of the program synthesized for the second task. The key insight of this step
is two-fold.
• First, the inductive methods help simplify the specification only to contain basic operators,
enabling a simple but effective deductive system.
• Second, we apply the deductive methods to bypass the synthesis of a large proportion of
unknown functions, reducing the original synthesis task a simpler task that conventional
program synthesizers can solve.

Evaluation. To evaluate SynMem, we create a benchmark of 42 declarative specifications of CPs.
In detail, we consider the top 36 dynamic programming problems in Leetcode [lee [n. d.]] that
appear most frequently in a real interview, all four dynamic programming problems in National
Olympiad in Informatics in Provinces-Junior (a national-wide programming contest in China) [NOI
[n. d.]] in the past ten years, and all benchmarks in the previous approach [Pu et al. 2011]. SynMem
successfully solves 39/42(92.8%) benchmarks in a reasonable time, outperforming the baselines [Pu
et al. 2011; Solar-Lezama et al. 2006].
Contributions. To summarize, our work has the following contributions.
• We structure the synthesis of memoization algorithms by capturing their essences. Our struc-
turing is more general than previous works [Lin et al. 2021; Pu et al. 2011]. By a sequence
of reductions, we obtain two independent synthesis tasks, which enable us to solve them
separately. Furthermore, we can synthesize an efficient MA by minimizing the range of the
function to be synthesized in the second task.
• We propose dedicated algorithms to solve two synthesis tasks effectively. The key novelty of
our algorithm is the mixture of inductive and deductive methods to take advantage of both
types of approaches .
• We create a benchmark of 42 declarative specifications of CPs and evaluate SynMem. The
evaluation results show that SynMem could effectively find efficient memoization algorithms
compared to baseline synthesis approaches [Pu et al. 2011; Solar-Lezama et al. 2006].

Due to the space limits, we relegate the full version to the author’s webpage [ful [n. d.]].

2 OVERVIEW
This part illustrates SynMem via running examples. We provide formal treatments in Sections 4
and 5. Below we first illustrate the specification and the synthesis goal in Section 2.1. Then, we
overview SynMem using the classic 0-1 knapsack problem in Sections 2.2–2.6.

2.1 The Specification and The Synthesis Goal

Specification. SynMem accepts purely symbolic declarative specifications of CPs as input, usually
written in a constraint modeling language such as MiniZinc [Nethercote et al. 2007]. In these
modeling languages, the user only needs to specify the intention of the problem instead of the
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// Inputs

int: n, C;

array [1..n] of int: weight;

array [1..n] of int: value;

// Solutions

array [1..n] of var 0..1: p;

// Constraints

constraint
∑n
j=1 weight[j] · p[j] ≤ C;

// Objective

solve maximize
∑n
j=1 value[j] · p[j];

Fig. 1. The specification of KP

detailed algorithm for solving the problem. A typical CP specification consists of four parts. Below,
we introduce the four parts with a classic optimization problem, the 0-1 Knapsack Problem (KP), as
shown in Figure 1∗. An instance of KP consists of a knapsack with capacity 𝐶 and a set of items.
Each item has its weight and value. The goal is to choose a subset of items with the maximum total
value, such that the total weight of selected items is no more than the capacity 𝐶 .
1. Inputs. The first part specifies the input parameters of the problem. Assigning different values to
the parameters produces different instances of the problem. For KP, we use n for the number of
items and two arrays, weight and value, for the weight and the value of the items, respectively.
Finally, we use C for the knapsack capacity, i.e., the total weight of the items cannot exceed C.
2. Solutions. The second part specifies the solution space. In SynMem, a solution consists of several
arrays of atomic variables, and the lengths of the arrays and the domain of each atomic variable
are finite and depend on the input parameters. In addition, the domain of each atomic variable is a
bounded interval of integers. For simplicity, we shall first consider a special case where only one
array exists, and discuss how to handle multiple heterogeneous arrays later. In KP, the solution
includes a single array p where each element p[i] is an atomic variable over 0..1, i.e., a Boolean
variable. Variable p[i] represents whether to put the 𝑖-th item into the knapsack.
3. Constraints. The third part specifies the constraints over the solution space, defining the validity
of a solution. In KP, we require the total weight of the chosen items to be no larger than C.
4. Objective. For an optimization problem, the fourth part starts with solve maximize and specifies
an objective function that assigns an objective value to each solution. In KP, the objective function
returns the total value of chosen items.

Given the four parts, the goal of the optimization problem is to find the maximum objective value
that any solution might have, and returns the value. A decision problem or a counting problem is
specified by supplying statement solve satisfy; or count satisfy; in the fourth part, where
the goal is to find any valid solution or to count the number of valid solutions.
Synthesis goal. SynMem aims to synthesize a correct and efficient memoization algorithm (MA)
for the given CP. For an optimal problem, the synthesized MA takes the concrete parameters of the
problem as input, produces the optimal value of the objective function for this concrete problem
instance as output. The algorithm should efficiently obtain the correct result for every concrete
instance. The synthesis result for KP is presented in Figure 6.

∗We do not strictly follow the syntax of MiniZinc for conciseness. In MiniZinc,
∑𝑛

𝑗=1 is written as sum(j in 1..n).
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2.2 Structuring MAs
This part gives our structuring of MAs. An MA caches and reuses the results of solved subproblems.
To design MAs, we need first to define the notion of subproblems.
Subproblems. Let us first consider using exhaustive search to solve this problem, as shown in
Figure 2. The search algorithm recursively enumerates the values of p[1], . . . , p[n]. By enumerating
every valid solution, it obtains the maximum objective value. In the program, we use a structure
atom_var_info to store the meta information of the atomic variables, and p_info[i] .dom stores
the domain of variable p[i], which is 0..1 in this case.
The main procedure Search recursively solves a subproblem of the original combinatorial

problem, and the definition of a subproblem is shown in Figure 3. A subproblem is amore generalized
version of the original combinatorial problem. Compared with the original problem, a subproblem
has an additional parameter i which separates the original solution array p[1:n] into two parts:
(i) the prefix p•[1:i-1] for the enumerated atomic variables, which is in the input part; (ii) the
suffix p◦[i:n] for the unknown variables to be explored, which is in the solution part. Note that
when i = 1, the subproblem coincides with the original combinatorial problem.

Figure 4 shows how the subproblems are recursively solved by the exhaustive search using
an example. Each non-leaf subproblem generates two child subproblems by considering different
assignments to p[i], and their maximum objective value is returned. Each leaf problem corresponds
to one solution, and returns either the objective value if the solution is valid or returns −∞.

int n,C; int[] weight , value;

atom_var_info [] p_info;

int search(int i, int[] p•) {

if(i > n)

return
∑n

j=1 weight[j] · p• [j] ≤ C ?∑n
j=1 value[j] · p• [j]: -∞;

return max
x∈p_info[i] .dom

search(i+1, p•++[x])

}

int main() {

read(&n, &C, &weight , &value);

return search(1, []);

}

Fig. 2. The search algorithm

// Inputs

int: n, C, i;

array [1..n] of int: weight;

array [1..n] of int: value;

array [1..i-1] of 0..1: p•;
// Solutions

array[i..n] of var 0..1: p◦;
// Constraints

constraint
∑i−1

j=1 weight[j] · p• [j]
+∑n

j=i weight[j] · p◦ [j] ≤ C;

// Objective

solve maximize
∑i−1

j=1 value[j] · p• [j]
+∑n

j=i value[j] · p◦ [j]

Fig. 3. The specification of a subproblem

Fig. 4. The subproblems on the parameter 𝐼0 = (n = 3, C = 3, weight = [1, 1, 3], value = [3, 4, 5]).

Gaps for memoization. The efficiency bottleneck of the exhaustive search is that the number of
subproblems is 2𝑛 . An MA accelerates this process by caching the results of all solved subproblems,
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Fig. 5. The execution of the MA on the parameter 𝐼0, where LOF is the LOF, and W is the MPF value.

and reusing a cached result if an equivalent subproblem is encountered. Typically, two subproblems
are considered equivalent if they have:
• (M1) the same suffix of unknown variables,
• (M2) equivalent objective functions, and
• (M3) equivalent constraints.

where two objective functions are considered equivalent if they map the same solution to the same
objective value, and two constraints are considered equivalent if they define the same set of valid
solutions.

To form an efficient MA, we need to ensure (1) many pairs of equivalent subproblems exist, (2) the
equivalence between subproblems can be efficiently determined without solving the subproblem.
Now we analyze the three conditions above. Firstly, consider the condition (M1). Note that the
number of subproblems is 2𝑛 , but the number of suffixes is 𝑛. Thus, many pairs must have the same
suffix. Also, the condition (M1) is easy to check: any pair of subproblems with the same 𝑖 fulfill this
condition. However, the remaining two conditions reflect two gaps in reusing the subproblems in
the exhaustive search.
(G1) The objective function for each subproblem depends on the enumerated variables. Since

different subproblems have different assignments to the enumerated variables, the objective
functions of the two subproblems are unlikely to be equivalent.

(G2) Thoughmany pairs of subproblems satisfy the third condition (M3), since any two subproblems
with the same remaining knapsack capability have equivalent constraints, and it is usually
assumed that the knapsack capacity 𝐶 is much smaller than 2𝑛 , it is costly to check whether
the constraints of two subproblems are equivalent or not.

To alleviate these gaps, our approach introduces two novel concepts, namely local objective function
(LOF) and memoization partition function (MPF). The local objective function replaces the original
objective function in the subproblems, and does not depend on the enumerated variable. The
memoization partition function allows us to easily check the equivalence of constraints between
subproblems. Below we describe the two functions in details.
Local Objective Function (LOF). To overcome (G1), we need to make the objective function of the
subproblems independent of enumerated variables. SynMem introduces the LOF, which does not
depend on the enumerated variables, and replaces the original objective function with the LOF. For
any subproblem, the ranking of each solution should not change by changing the objective function
to LOF. In addition, the LOF should return the same value as the original objective function on the
subproblem where 𝑖 = 1 (i.e., the original problem).
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Since LOF does not depend on enumerated variables, any subproblems with the same 𝑖 have
equivalent LOFs. Thus, by replacing the objective function with the LOF, the condition (M2) for
equivalent subproblems can be implied by (M1), enabling a higher chance to reuse and an efficient
way to check equivalence.

For KP, a LOF can be the second half of the objective function in Figure 3, as follows.∑𝑛
𝑗=𝑖 p

◦ [j] · value[j]
Since the search program recursively solves a subproblem, we need to derive two components

from LOF to adapt the search program to return the local objective values.
• An initial local objective value Lleaf for the leaf tasks whose corresponding solution is valid.
For KP, the initial value is 0, as there is no unknown variable.
• An update function Lupd for calculating the local objective value of a solution in a parent sub-
problem from that of a solution in a child subproblem. For KP, Lupd can be L + p• [i] · value[i],
where i is the input parameter to the parent subproblem and L is the optimal LOF value of the
child subproblem.

Memoization Partition Function (MPF). To overcome (G2), we need to quickly check the equiva-
lence of the constraints between two subproblems (the condition (M3) above). SynMem introduces
the MPF, which is a function over the set of enumerated variables and the input of the original
specification. If MPF maps two subproblems with the same parameter i to the same value, they
share equivalent constraints, which enables efficient checking. SynMem considers MPFs whose
output is a tuple of scalars, which is common for MAs. Considering more versatile MPFs is left for
future work. For KP, an MPF can be the total weight of currently selected items, as follows.∑𝑖−1

𝑗=1 weight[j] · p• [j]
However, calculating the MPF is still costly, as we need to scan over all enumerated variables. To

further optimize the algorithm, we calculate the MPF incrementally along a sequence of recursions.
Similar to the case of LOF, we derive two component from MPF.
• An initial MPF value Minit for the first subproblem where 𝑖 = 1. For KP, the initial value is 0, as
there is no known variable.
• An update function Mupd for calculating the MPF value of a child subproblem from the MPF
value of a parent subproblem. For KP, Mupd is defined as M + p• [i] · weight[i], where i is the
input parameter to the child subproblem, and𝑀 is the MPF value of a parent subproblem.

The Memoization Algorithm. Based on the LOF and MPF, we can implement an MA for KP.
Figure 6 shows a program synthesized by SynMem. For presentation purposes, the program is
given as the synthesis result of a sketch. This program follows the same recursive search process
as the exhaustive search and introduces a map mem to store the result of existing subproblems (Line
3). For non-leaf subproblems, the algorithm first queries mem and returns if a cached result of an
equivalent problem is found (Lines 12-13). Map mem takes the input parameter i and the MPF value
M as the key, which corresponds to the conditions (M1)–(M2) (Note that by the LOF, (M2) is implied
by (M1)) and (M3), respectively. The search procedure returns the maximum local objective value
rather than the original objective value and updates the LOF and the MPF values incrementally
using Mupd and Lupd.

Figure 5 shows how the MA executes on the same example as Figure 4. With LOF and MPF, many
subproblems can be identified as equivalent. Note that in each equivalence class of subproblems, we
only need to search for the result of one subproblem. We can reuse this result for other subproblems
in this class. For MAs, the number of equivalence classes (and thus the number of subproblems
to be searched for) is bounded by the domain of the mem map, which is a pseudo-polynomial
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1 int n, C; int[] weight , value;

2 atomic_var_info [] p_info;

3 map <⟨int ,intk ⟩, int > mem;

4 int Lleaf = Lleaf, Minit = Minit;

5 int Lupd(int i,int L,int x){ return Lupd;};

6 int Mupd(int i,intk M,int x){ return Mupd;};

7 int Search(int i,intk M,int[] p•) {

8 if (i > n)

9 if(
∑n

j=1 weight[j] · p• [j] ≤ C)

10 return Lleaf;

11 else return -∞;

12 if(mem.contains(⟨i,M⟩))
13 return mem[⟨i,M⟩];
14 int ans= max

x∈p_info[i] .dom
Lupd (i, L(x), x)

15 where L(x)= Search(i+1,M'(x),p•2(x))

16 and M'(x)=Mupd(i,M,x)

17 and p•2(x)=p
• ++[x]

18 return mem[⟨i,M⟩]=ans;
19 }

k=1

Lleaf=0; Minit=⟨0⟩;
Lupd=L + x · value[i];
Mupd=⟨M.1+x · weight[i] ⟩;

20 int main() {

21 read(&n,&C,&weight ,&value);

22 initialize (&p);

23 return search(1,Minit ,[]);

24 }

Fig. 6. The generated search sketch and the synthesis result for KP. The box in the upper right corner lists
the synthesized expressions for Lleaf, Minit, Lupd, Mupd. We can plug these expressions into the sketch to
obtain the complete synthesized MA for KP.

𝑂 (n · ∑n
i=1 weight[i]). Furthermore, Lupd and Mupd are executed in 𝑂 (1) time, ensuring a single

execution of Search is also efficient. Thus, the MA has the pseudo-polynomial complexity and is
significantly more efficient than the exhaustive search with the exponential time complexity.

In the end, we remark the connection between our structuring and two fundamental properties
required for dynamic programming.
• Optimal substructures requires that a subpart of an optimal solution is still optimal for the
subproblem concerning this subpart. In other words, a subproblem should be independent
of the enumerated variables. The LOF and MPF jointly ensure this property. LOF removes
this dependency in the objective function. MPF ensures that two subproblems with the same
parameter i and the same MPF value have equivalent constraints. Thus, the enumerated
variables are not needed in checking the validity of a solution when the MPF value is available.
• Overlapping subproblems requires that many equivalent subproblems exist. The more sub-
problems are overlapped, the smaller the number of equivalent classes of subproblems is, and
the higher the efficiency of the dynamic programming algorithm is. As discussed above, this
number is fully determined by the number of atomic variables and the range of the MPF.

2.3 Overview of The Synthesis Procedure
The synthesis of MAs is non-trivial. As mentioned in the introduction (Section 1), there are two
major challenges, scalability and efficiency. An MA is usually a large program with complex loops
or recursive calls and is beyond the reach of existing general-purpose program synthesizers [Ji et al.
2021; Lee and Cho 2023; Miltner et al. 2022]. Furthermore, standard synthesis framework such as
SyGuS does not require efficiency, and it is not easy to ensure the efficiency of the synthesized
MAs.
To address the scalability challenge, we follow our structuring as follows. Synthesizing an MA

can be seen as filling a search sketch (Figure 6) that follows an exhaustive search. By generating
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the search sketch, the scale of the remaining components (the box in the upper right corner in
Figure 6) is much smaller. Thus, SynMem first generates the search sketch. Furthermore, SynMem
generates the exhaustive search program as the reference implementation to verify the correctness
of the synthesized MA. (Section 2.4)

To complete the search sketch, we note that the existing sketch solver [Solar-Lezama et al. 2006]
does not scale to synthesize MAs (Section 6). Thus, we further follow our structuring as follows.
The key to designing an MA is to find two functions, LOF and MPF, which capture different and
independent aspects of the MA. As a result, SynMem converts the sketch synthesis problem into
two independent problems of synthesizing LOF and MPF. Furthermore, the smaller the range of the
MPF is, the more efficient an MA is. Thus, SynMem synthesizes an efficient MA by minimizing the
range. After synthesizing the LOF and the MPF, SynMem obtains the corresponding initial values
and the updating functions to fill the sketch. (Section 2.5)

Finally, the specifications for the two synthesis problems are relational and are too complex to be
solved by existing approaches. Thus, we further introduce a new synthesis algorithm that combines
inductive and deductive methods. The inductive method removes complex higher-order operators,
facilitating deductive analysis. The deductive method applies the term rewriting to bypass the
synthesis of a large proportion of unknown functions. We also introduce a heuristic to control the
range of the synthesized MPF to ensure efficiency. (Section 2.6).

2.4 Generating the Search Sketch and the Exhaustive Search Program

Generating Process. We generate the exhaustive search and its sketch following a template-based
method, where most of the code is pre-written and only a few components are generated to adapt
to different combinatorial problems. We have seen the search sketch for KP in Figure 6. We can see
that most of the search sketch is fixed and can be pre-written, and we only need to generate a few
components, all of which can be easily deduced from the specification. Specifically, we need to (i)
deduce the size of the solution space and generate the conditional expression in line 8, (ii) generate
the conditional expression in line 9 by copying the constraints, (iii) generate line 1 by copying the
inputs, (iv) generate the procedure for reading the inputs (line 21), and (v) generate the procedure
for initializing p_info. The exhaustive search program in Figure 2 can be generated similarly.

Multiple Arrays and Enumeration Orders. The search sketch above only covers the case where
there is a single array in the solution part. Below, we illustrate the ideas for extending the search
sketch into the case where the solution part contains multiple arrays. In this case, we need to
enumerate the atomic variables in all arrays. Therefore, we can treat the solution space generically
as a sequence of atomic variables, which is formed by concatenating all the arrays, and the domain
of each variable is recorded in p_info.

Since the order of enumerating different arrays may affect the synthesis result, SynMem considers
the permutations of all arrays, and generates a search sketch for each permutation. Furthermore,
sometimes the specification contains multiple arrays of the same length, which are expected to be
enumerated together. SynMem also tries zipping the arrays of the same length and enumerates all
atomic variables in the same tuple of the zipped array simultaneously.

2.5 Decomposing into Smaller Synthesis Problems
After generating the exhaustive search algorithm and the sketch, we aim to complete the search
sketch so that the complete program is efficient and equivalent to the exhaustive search. Such a
synthesis from reference implementation problem [Farzan et al. 2022; Lee and Cho 2023; Miltner et al.
2022] is often addressed by the counter-example guided inductive synthesis (CEGIS) framework.
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CEGIS. CEGIS is performed in iterations. In each iteration, we synthesize an MA that obtains the
same output as the exhaustive search on a finite set of problem instances. Then, a verifier verifies
whether the synthesized MA is correct. If not, the verifier returns a counter-example, we add the
counter-example to the set of problem instances, and start a new iteration.
Our approach is general and can be used with any verifier. Our current implementation uses

bounded testing, and exploring more sophisticated verification techniques [Badihi et al. 2020;
Churchill et al. 2019] is an orthogonal problem left for future work.

In each CEGIS iteration, the task is to complete the search sketch over a set of instances. As dis-
cussed before, this problem is too complex for existing sketch synthesizers, and we first decompose
it into independent tasks of synthesizing LOF and MPF.

Specification for the LOF . Though only the initial values and the updating functions are needed
in filling the sketch, we synthesize LOF first and then the two components from LOF to reduce
the difficulty of synthesis. Recall that the function LOF(i, p[i : n]) needs to satisfy two conditions:
1) returning the same value as the original objective function on the first subproblem, and 2)
retaining the order of the solutions. Thus, we impose the following condition (C1) for every
instance (n, C, weight, value) considered in the current CEGIS iteration, and every 1 ≤ i ≤ n.
Intuitively, this condition requires that the original objective value can be obtained from the local
objective value and the enumerated variables.

(C1) ∃ ⊕𝑖 ∀p.
(∑n

j=1 p[j] · value[j] = p[1 : i − 1] ⊕i LOF(i, p[i : n])
)

We further require that ⊕𝑖 is monotonically increasing with respect to the second parameter, i.e.,
𝑥𝑠 ⊕𝑖 𝑥 increases as 𝑥 increases, and ⊕1 should directly return its second parameter, i.e., [] ⊕1 𝑥 = 𝑥 .
Note that (C1) is equivalent to the two conditions of LOF, and we are not intended to synthesize ⊕𝑖 ,
which is a ghost function variable and will be eliminated by a deductive approach later.

After we have LOF, we further impose conditions (C2)–(C3) to obtain Lupd and Lleaf.

(C2) ∀p.
(
LOF(i, p[i : n]) = Lupd (i, LOF(i + 1, p[i + 1 : n]), p[i])

)
(C3) Lleaf = LOF(n + 1, [])

Specification for the MPF . Similar to LOF, we first synthesize MPF and then its initial value and
updating function. Recall that if MPF(i, p[1 : i−1]) returns the same value on two subproblems, the
two subproblems have the equivalent constraints. To model this property into a program synthesis
task, we can equivalently rephrase this property as follows. Note that this property holds if and
only if the constraint in the given CP can be equivalently transformed into a predicate that depends
on the result of the MPF but not the enumerated variables for validity checking. Therefore, we
impose the following condition (D1) for every instance (n, C, weight, value) considered in the
current CEGIS iteration, and every 1 ≤ i ≤ n.

(D1) ∃ ⊙𝑖 .
(∑𝑛

𝑗=1 p[j] · weight[j] ≤ C⇔ MPF(i, p[1 : i − 1]) ⊙𝑖 p[i : n]
)

Similarly, we are not intended to synthesize the ghost function variable ⊙𝑖 . Furthermore, to find an
efficient MA, we need to minimize the range of the MPF.

We further impose conditions (D2)–(D3) to obtain Mupd and Minit.

(D2) ∀p.
(
MPF(i + 1, p[1 : i]) = Mupd (i, MPF(i, p[1 : i − 1]), p[i])

)
(D3) Minit = MPF(1, [])

In the end, we remark that n, C, weight and value are visible to all functions to be synthesized
above, but we omit this dependency for conciseness.
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2.6 Solving the Synthesis Problems
Both synthesis problems for LOF and MPF are relational [Wang et al. 2018]. Since the number of
unknown functions (⊕𝑖 in (C1), ⊙𝑖 in (D1) for each 1 ≤ 𝑖 ≤ 𝑛, the LOF and the MPF) are usually
large, these two synthesis problems are beyond the reach of the previous approach on relational
program synthesis [Wang et al. 2018].
Hence, we propose a novel synthesis algorithm for the two tasks. Our algorithm applies the

deductive term rewriting [Willsey et al. 2021] to bypass the synthesis of ⊙𝑖 ’s (⊕𝑖 ’s) and reduce each
task into a conventional SyGuS task. Below, we illustrate how to solve (C1)–(C3) and complete the
holes Lleaf and Lupd in a single CEGIS iteration over a single instance 𝐼0 presented in Figure 4.
The procedure for (D1)–(D3) is similar, which we sketch at the end of this section.
Inductive Instantiation. We first address (C1) to obtain LOF. This specification involves ghost
variables ⊕𝑖 and a complex higher-order operator Σ. We first remove Σ to facilitate the deductive
transformation in the next step, which removes ⊕𝑖 . Since we only need to synthesize the LOF over
a set of concrete problem instances in a CEGIS iteration, we can expand the Σ operator for each
problem instance. We plug in 𝐼0 into (C1) and obtain the following.

∀p 3 · p[1] + 4 · p[2] + 5 · p[3] = LOF(1, p[1 : 3]) (1)
∃ ⊕2 ∀p 3 · p[1] + 4 · p[2] + 5 · p[3] = p[1 : 1] ⊕2 LOF(2, p[2 : 3]) (2)
∃ ⊕3 ∀p 3 · p[1] + 4 · p[2] + 5 · p[3] = p[1 : 2] ⊕3 LOF(3, p[3 : 3]) (3)

Here all ghost function variables ⊕2, ⊕3 are monotone with respect to the second argument.

Deductive term rewriting. To remove the ghost variables ⊕𝑖 , SynMem integrates a deductive term
rewriting system. It systematically rewrites the LHS of (1)–(3) into the equivalent forms, implicitly
exploring different candidates of ⊕𝑖 .

Concretely, consider the condition (2) above first. By rewriting the LHS of (2) as (3·p[1])+(4·p[2]+
5·p[3]), we can deduce that, once we find a LOF such that∀p[1 : 3] LOF(2, p[2 : 3]) = 4·p[2]+5·p[3],
we can choose ⊕2 as 3 · p[1] + LOF(3, p[2 : 3]) to establish (2). Similarly, we can apply rewriting and
choose ⊕3 as (3 · p[1] + 4 · p[2]) + LOF(3, p[3 : 3]), given LOF(3, p[3 : 3]) = 5 · p[3]. Note that ⊕2
and ⊕3 only involve primitive operators + and ·. Thus, we could trivially check the monotonicity
since 𝑎 + 𝑏 increases as 𝑏 increases. In Figure 7, we present a possible resulting synthesis task for
LOF after we have rewritten (1)–(3).

∀p LOF(1, p[1 : 3]) = 3 · p[1] + 4 · p[2] + 5 · p[3]
∀p LOF(2, p[2 : 3]) = 4 · p[2] + 5 · p[3]
∀p LOF(3, p[3 : 3]) = 5 · p[3]

Fig. 7. A possible condition for synthesis

Reduction to SyGuS. Figure 7 shows a conven-
tional SyGuS specification [Alur et al. 2018]. In a
SyGuS problem, we are given a domain-specific
language (DSL) representing the whole program
space and need to find a correct program on all in-
puts. Since the LOF admits an updating function,
it must be a program in the structural recursion
form. Thus, SynMem synthesizes the LOF under a
language that includes the compositions of the typical list structural recursion operators (e.g., map,
filter, sum, etc.) We use the basic bottom-up enumerative method to solve this task, synthesiz-
ing LOF(i, p[i : n]) = sum (map(𝜆j.value[j] · p[j], index p◦) in our DSL, which is equivalent to∑n

j=i value[j] · p[j].
After synthesizing the LOF, conditions (C2) and (C3) are conventional SyGuS tasks. Thus, we

assume an external SyGuS solver to synthesize of the updating function. In our implementation, we
carefully restrict our DSL such that for any synthesized LOF, we can use syntactic transformations
to derive its updating function. In addition, the derived updating function is guaranteed to be
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𝑂 (1). For KP, we obtain that Lupd (i, L, p[i]) = L + p[i] · value[i], and its initial value, Lleaf = 0,
completing the holes Lleaf and Lupd.

Synthesizing the MPF . The correctness condition (D1)–(D3) for the MPF is very close to (C1)–(C3).
Hence, we follow the same procedure to synthesize MPF and derive its initial value and the updating
function. However, there are two differences.
First, we need to synthesize functions that output a tuple of scalars. We will enumerate the

number of tuples in the output and synthesize the function for each component in the tuple.
We reformalize this problem as a hitting set problem and apply the pruning on the max-degree
bound [Bläsius et al. 2022] to efficiently solve this problem.
Second, we need to find an MPF with a minimized output range. We observe that applying a

structural recursion function (e.g., sum, max) shrinks the range of the result. Thus, the larger the
synthesized program, the smaller ranges the MPF would have. Thus, we follow the heuristics that
enumerates the programs from large to small for the SyGuS problem. Applying the above proce-
dure to KP, we obtain M(𝑖, p[1 :i − 1]) = sum (map(𝜆j.weight[j] · p[j], index p•), and generate
Mupd (i, M, p[i]) = M + p[i] · weight[i] and Minit = 0, completing the holes Minit and Mupd.

In the end, we remark that though conditions (D1) and (D2) are syntactically similar, the synthesis
of (D1) is a relational program synthesis task, but the synthesis of (D2) is a classic SyGuS task.
Thus, SynMem treats differently on these two conditions. Furthermore, note that SynMem is
straightforwardly sound due to our insights into MAs and is complete (the reduction from Figure 6
to Figure 7 never excludes valid programs) if the set of equivalent expressions is recursively
enumerable (Section 5.2).

3 FORMALIZING THE SYNTHESIS TASK

Representing CPs. The essential attributes of our specification have been illustrated in Section 2.
Below we present the language features in more detail. Please refer to the full version of this paper
for a complete illustration. A typical CP specification consists of four parts as follows.

1. Inputs. This part consists of the parameters of the problem. Each parameter is specified as an
atomic value or an array of atomic values. The array length may depend on other parameters. The
domain of each atomic value is a bounded interval l..r of integers, whose endpoints l and r can
also depend on other parameters. For simplicity, we only consider 1-dimensional arrays. Other data
structures, such as 𝑛-dimensional arrays or lists, can be converted to 1-dimensional arrays and fit
into our framework.
2. Solution. The solution part consists of 𝑘 arrays sol1, . . . , solk of atomic variables. The array

soli has the index pi..qi and the bounded interval li..ri as the domain for atomic variables,
where pi, qi, li and ri only depend on the parameters. Still, we only consider 1-dimensional arrays.

3. Constraints. This part specifies the constraints in the solution space and defines the validity
of a solution. When defining a constraint, SynMem supports common logical connectives (e.g.,
∧,∨,¬, <, >,=, etc.), common arithmetic operators (e.g., +,−,×,max,min, etc.). SynMem also sup-
ports accumulators in the form ACC(v in l..r)(f(v)), where ACC ∈ {sum, min, max, . . . }. It iterates
the fresh variable v from l..r and accumulates the results f(v). Furthermore, SynMem supports
for-loops to forall(v in l..r)(expr(v)) to construct a list of constraints [expr(v) | l ≤ v ≤ r].
Here, we also restrict that the range l..r only depends on the parameters.

4. Objective. This part specifies the type of the given CP, which has been illustrated in Section 2.1.
Below, we define core concepts for the synthesis task.

Problem instances. Given the specification of a CP, the problem instance 𝐼 is the quadruple
⟨𝛽,V ,𝐶,𝑂⟩ where:
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• 𝛽 is the assignment to all parameters in the input part, where all array lengths are consistent
with the value of other parameters, and all atomic values are within their domains.
• V is the set of atomic variables for the problem instance. Given the parameters 𝛽𝐼 , for every
array soli in the solution part, its indices pi ..qi and the domain of each atomic variable li ..ri
are fixed. Concretely, in this array, each atomic variable soli [j] (pi (𝛽) ≤ j ≤ qi (𝛽)) has the
domain (li (𝛽)..ri (𝛽)). V collects the name and the domain of these variables.
• 𝐶 is the set of constraints for the problem instance. This is defined as substituting the original
constraint with 𝛽 . We expand the for-loop forall(v in l..r)(expr(v)) and add every
expr(v) (l(𝛽) ≤ v ≤ r(𝛽)) to 𝐶 .
• 𝑂 is the objective for the problem instance. For COPs, it is defined as substituting the original
objective function with 𝛽 . For CCPs and CDPs, it is a single value indicating the CP type.

In the rest of the paper, we omit the subscript 𝐼 for simplicity if no confusion would be caused.
Assignments. Given a specification and its problem instance 𝐼 = ⟨𝛽,V ,𝐶,𝑂⟩, the assignment
V • is a (partial) map over a subset of atomic variables. 𝑉 • maps each atomic variable 𝑣 in this
subset to a concrete value in the domain of 𝑣 . The V • is termed as total if it is a total map from
V → Int, meaning we have fixed the values for all atomic variables. We use V tot to represent a
total assignment. Furthermore, for every assignment V •, we use 𝐶 (V •) (𝑂 (V •), resp.) to represent
the constraints (the objective, resp.) by further substituting the original one with the assignment
V • to part of atomic variables. Specifically, if V • violates any constraint ∈ 𝐶 , we set𝐶 (V •) = False.
Note that for total assignments V tot, 𝐶 (V tot) is either True or False, and 𝑂 (V tot) is the objective
value of V tot for COPs.
The synthesis goal. Given the specification, SynMem aims to synthesize a program 𝑃 such that for
every parameter 𝛽 , the program 𝑃 reads 𝛽 and obtains the problem instance 𝐼 = ⟨𝛽,𝑉 ,𝐶,𝑂⟩, and
outputs the correct value 𝑃 (𝐼 ) such that.
• For combinatorial optimization problems (COPs), 𝑃 (𝐼 ) is the maximum objective value of a
valid total assignment, i.e., 𝑃 (𝐼 ) = maxV tot {𝑂 (V tot) | 𝐶 (V tot) = True}.
• For combinatorial decision problems (CDPs), 𝑃 (𝐼 ) is whether there exists a valid solution, i.e.,
𝑃 (𝐼 ) = True iff {V tot | 𝐶 (V tot) = True} is non-empty.
• For combinatorial counting problems (CCPs), 𝑃 (𝐼 ) is the number of valid solutions, i.e., 𝑃 (𝐼 ) =
|{V tot | 𝐶 (V tot) = True}|.

Specifically, SynMem aims to synthesize a MA whose structure is defined in Section 4.

4 THE STRUCTURE OF THE MEMOIZATION ALGORITHMS
In this part, we illustrate the structures of the MAs. We have illustrated the main ideas in Section 2.2.
Below, we provide the formal treatment. In our structuring, the MAs are built upon the exhaustive
search algorithms. It enumerates all atomic variables from the given enumeration order. Thus, we
must first formally define the enumeration order as follows.
Enumeration order . The enumeration order specifies the order of the atomic variables for every
problem instance. Different orders yield different MAs. Thus, SynMem tries all enumeration orders
in the prescribed space, whose syntax and semantics are presented in Figure 8. The space consists
of all permutations of the arrays in the solution part. It also supports enumerating several arrays
with the same length simultaneously. Note that zip can have only one parameter, which means
the array itself. Within each array sol[pi ..qi], the program enumerates from sol[pi] to sol[qi].
Given the problem instance 𝐼 , the semantics J𝐸K is a list, where the 𝑖-th element stores the name
and the domain for the set of atomic variables enumerated at the 𝑖-th step.
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E ::= zip(sol1, . . . , solt) where sol1, . . . solt have the same length.
| E1; E2

JE1; E2K = JE1K ++ JE2K

Jzip(sol1, . . . , solt)K = [(sol1 [l1], . . . , solt [lt]), . . . , (sol1 [r1], . . . , solt [rt])]

Fig. 8. The syntax and the semantics of enumeration orders

Example 4.1. Suppose there are two arrays of atomic variables a and b with the same index 1..n.
Then, after assigning the a value to n, zip(a); zip(b) evaluates to the order [a[1], . . . , a[n], b[1], . . . ,
b[n]] that sequentially enumerates two arrays a and b, but zip(a, b) evaluates to the order
[(a[1], b[1]), . . . , (a[n], b[n])] that enumerates (a[i], b[i]) at the same time.

We only consider enumeration orders 𝐸 such that all arrays in the solution part appear exactly
once. Such orders visit all atomic variables exactly once for every problem instance. Given the
order 𝐸 and a problem instance 𝐼 , we can rearrange the atomic variables 𝑉 into a list [𝑉1, . . . ,𝑉m],
where each 𝑉i is the set of atomic variables to be enumerated at the i-th step.

Below, we present the template for the exhaustive search and its sketch. We fix the enumeration
order 𝐸, the concrete instance 𝐼 = ⟨𝛽,V ,𝐶,𝑂⟩.

4.1 The Exhaustive Search and Its Sketch
In our structures, the exhaustive search and its search sketch follow a template as follows.
Exhaustive search. The template for the exhaustive search is presented in the left half of Figure 9.
It follows the order JEK (denoted by V = [V1, . . . , Vm]) of the atomic variables on the problem instance
𝐼 and recursively enumerates each Vi in the procedure Search.

Consider the invocation search(i, V •), where i is the search stage, meaning that the exhaustive
search will currently enumerate the atomic variables V [i], and V • is the partial assignment to the
enumerated atomic variables 𝑉 [1 : i − 1]. Whenever the assignment V • is invalid, it returns the
invalid result obj_invalid immediately (Lines 5–6). After enumerating all variables, it returns the
objective value obj_val(V •) for the total assignment V • (Lines 7–8). It enumerates the assignment
to V [i] and merges the result of all sub-procedure calls using the function obj_merge. The type
of the given CP entirely determines the expressions obj_invalid, obj_val(V •), and obj_merge,
which is listed in Figure 9. Since the enumeration order visits each atomic variable exactly once, it
is easy to see that the following theorem holds.

Theorem 4.2 (Soundness of the exhaustive search). Given any specification and any enumer-
ation order 𝐸, the exhaustive search algorithm (Figure 9) matches the synthesis goal in Section 3.

Subproblem. Given the enumeration order𝐸 and the problem instance 𝐼 , each invocation search(i, V •)
can be identified as an intermediate subproblem 𝑄 (i,V •), whose specification is as follows.
• The atomic variables of the subproblem is 𝑉 [i : m], which is the set of unknown atomic
variables at the search stage i.
• The constraint of this subproblem is 𝐶 (V •)
• The objective of this subproblem is 𝑂 (V •).

Search sketch. As discussed in Section 2.2, the subproblems in the exhaustive search does not enable
efficient reusing. To optimize the search, the MAs introduces the local objective function (LOF) and
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1 const enum_order 𝐸;

2 parameter 𝛽;

3 problem_instance 𝐼 ;

4 atom_var_info [] V_info;

5 void search(int i,agn_t V •) {

6 if(𝐶 (V • )==False)
7 return obj_invalid;

8 if (i>length(V_info ))

9 return obj_val(V •)
10 int ans=obj_invalid;

11 for V •
𝑖
∈ V_info[i] .dom

12 ans=obj_merge(ans ,subval );

13 where subval=search(i+1,V •2 )
14 and V •2 = V • ++V •

𝑖

15 return ans;

16 }

17 int main() {

18 read(&𝛽);

19 𝐼 =gen_instance(𝛽);

20 V = J𝐸K;
21 return search (1 ,[]);

22 }

COP CDP CCP
obj_invalid −∞ False 0
obj_val(V • ) 𝑂 (V • ) True 1

obj_merge(𝑎,𝑏 ) max(𝑎,𝑏 ) 𝑎 ∨ 𝑏 𝑎 + 𝑏

CDP CCP
Lleaf True 1
Lupd L L

1 const enum_order 𝐸;

2 parameter 𝛽;

3 problem_instance 𝐼 ;

4 atom_var_info [] V_info;

5 map <(int , int𝑘 ), int > mem;

6 int Lleaf = Lleaf, Minit = Minit;

7 int Lupd(int i,int L,agn_t V •
𝑖
)

8 { return Lupd;}

9 int𝑘 Mupd(int i,int𝑘 M,agn_t V •
𝑖
)

10 { return Mupd;}

11
12 int search(int i,int𝑘 M,agn_t V •) {

13 if (𝐶 (V • )==False)
14 return obj_invalid;

15 if (i>length(V_info ))

16 return Lleaf;

17 if(mem.find(i,M)!=mem.end())

18 return mem[(i,M)];

19
20 ans=obj_invalid;

21 for V •
𝑖
∈ V_info[i] .dom

22 ans=obj_merge(ans ,Lupd(i,L,V •𝑖 ));
23 where L=search(i+1,M',V •2 )
24 and M'=Mupd(i,M,V •𝑖 )
25 and V •2 =V

• ++V •
𝑖

26 return mem[(i,M)]=ans;

27 }

28 int main() {

29 read(&𝛽);

30 I = gen_instance(𝛽);

31 V = J𝐸K;
32 return search(1,Minit ,[]);

33 }

Fig. 9. The pseudo-code for the template for the exhaustive search (left) and its sketch (right). The holes
Lleaf, Minit, Lupd, Mupd need to be filled by synthesized expressions.

the memoization partition function (MPF). Thus, we define the template for the search sketch (Fig-
ure 9), which follows a similar recursive procedure with the exhaustive search but adds some codes
and holes for the LOF and the MPF, which we illustrate in Sections 4.2 and 4.3.

4.2 Local Objective Functions
We introduce the LOF and its updating function in our structure of MAs to make the objective
function of different subproblems more likely to be equivalent. For CDPs and CCPs, since there is
no objective function, the holes Lleaf and Lupd can be trivially filled, as shown in Figure 9. Below,
we only discuss the case for COPs. We present the formalization of LOF and its updating function.

Local Objective Function (LOF). The LOF(i,𝑉 [i : m]) is a function independent with the set of
enumerated atomic variables. For each subproblem𝑄 (i, V •), we replace its objective function from
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𝑂 (V •) with LOF. We generalize the condition (C1) in Section 2.5 and define the LOF as follows.
∀𝐼 .∀i ∈ [1 : m] .∃ ⊕𝑖 .∀V •.∀V ◦.𝑂 (V • ++V ◦) = V • ⊕𝑖 LOF(𝑖,V ◦) (4)

where we further restrict that each ⊕𝑖 is monotonically increasing with respect to its second
argument 𝑥 . Moreover, for 𝑖 = 1, we restrict that ∀𝑥 .[] ⊕1 𝑥 = 𝑥 .
Updating function of the LOF . We also need the updating function Lupd (i, L,V •i ) to obtain the
LOF from those of the child subproblems, where the first parameter is the search stage, the second
parameter is the LOF of the child subproblem, the third parameter is the assignment to the currently
enumerated atomic variables V [i]. It must satisfy the following equation.

∀𝐼 .∀i ∈ [1 : m] .∀V tot .LOF(i,V tot [i : m]) = Lupd (i, LOF(i + 1,V tot [i + 1 : m]),V tot [𝑖]) . (5)

In the template of the search sketch, for the LOF, we leave two holes:
• Lleaf that equals the LOF for the leaf subproblems LOF(m + 1, []), and is applied in Line 16.
• Lupd that equals the updating function Lupd (i, L,𝑉 •i ), and is applied in Line 22.

4.3 Memoization Partition Functions
We introduce the MPF and its updating function to quickly identify whether two subproblems have
the same valid solution set.
Memoization Partition Function (MPF). The MPF(i,𝑉 [1 : i − 1]) is a function over the enumer-
ated variables 𝑉 [1 : i − 1] and the parameters in the original specification. It outputs a tuple of
scalars. We generalize the condition (D1) (Section 2.5) and define the MPF as follows.

∀𝐼 .∀𝐶0 ∈ 𝐶.∀i ∈ [1 : m] .∃ ⊙𝐶0,𝑖 .∀V •.∀𝑉 ◦.
(
𝐶0 ⇔ MPF(𝑖,V •) ⊙𝐶0,𝑖 V

◦) (6)

Updating function of theMPF . We need an updating function Mupd (i, M, V•i), whose first parameter
is the search stage 𝑖 , second parameter is the MPF value of the parent subproblem and the third
parameter is the assignment to currently enumerated variables V [i].

∀𝐼 .∀i ∈ [1 : m] .∀V tot .MPF(𝑖 + 1,V tot [1 : 𝑖]) = Mupd (𝑖, MPF(𝑖,V tot [1 : 𝑖 − 1]),𝑉 tot [𝑖]) . (7)

In the template (Figure 9), we add the parameter W in the procedure search to track the MPF
value, we also leave two holes:
• Minit that equals the initial value for MPF(1, []) and is applied in Line 32.
• Mupd that equals the updating function for the MPF and is applied in Line 24.
In the end, we remark the input parameters are visible to all functions above. We formalize the

properties of our structuring as follows.
Theorem 4.3 (Correctness and Efficiency of Our Structure). Given any specification, if

there are functions LOF, Lupd, MPF, Mupd satisfying the conditions (4)–(7), then we can fill the holes
Lleaf, Lupd, Minit, Mupd in the search sketch (Figure 9), deriving the MA 𝑃mem such that:
• (Correctness) 𝑃mem is equivalent to the exhaustive search algorithm in Figure 9, thus matches the
synthesis goal in Section 3.
• (Efficiency) Given any problem instance 𝐼 = ⟨𝛽,V ,𝐶,𝑂⟩, the number of equivalence classes of the
subproblems is 𝑂 ( |𝑉 | · range), where range the number of different outputs of the MPF on the
problem instance 𝐼 .

Proof. For the correctness part, consider two invocations of the procedure search that corre-
spond to two subproblems𝑄 (i, V •1 ) and𝑄 (i, V •2 ). Suppose they have the same i and the same MPF
value MPF(i,V •1 ) = MPF(i,V •2 ). In that case, they have the same set of unknown atomic variables
V [i : m], the same LOF, and the same valid solution set over V [i : m]. Hence, the output of the two
invocations must be the same. As a result, we can set up a map mem to safely reuse between these
subproblems. The efficiency part is straightforward. □
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5 SYNTHESIZING MEMOIZATION ALGORITHMS
5.1 The Outmost Controller
In the outmost iteration (Algorithm 1), SynMem tries enumeration orders from the space (Figure 8)
since different enumeration orders yield different MAs. SynMem also iteratively increments the
hyperparameters B and K to bound the program space when synthesizing the LOF and the MPF,
which will discuss in detail in Section 5.2. If the synthesis fails, it increments these parameters and
restarts a new iteration. It relies on two procedures GenSketch and CEGIS, illustrated as follows.
GenSketch. Given a specification and the enumeration order 𝐸, this procedure generates the
exhaustive search and its sketch from the template (Figure 9). Note that the length of the arrays in
the solution part, the domain of each atomic variable, and all range expressions in the constraint and
objection part only depend on the input parameters, and are fixed given the parameter choice 𝛽𝐼 .
As a result, we can easily deduce the program that takes 𝛽𝐼 as input and outputs other components
𝑆𝐼 ,𝐶𝐼 , and 𝑂𝐼 in the program instance, completing the generating procedure.
CEGIS. To tackle the sketch problem from a reference exhaustive search implementation, SynMem
applies the counter-example guided inductive program synthesis framework (Section 2.5) to reduce
the original synthesis problem to synthesizing an efficient and correct MA that is equivalent to the
exhaustive search for a finite set of problem instances E (Algorithm 2).

Algorithm 1: The Outmost Controller
Input: The specification
Output: The memoization program M

1 B← Binit; K← Kinit
2 while not synthesized yet do
3 foreach 𝐸 ∈ GetEnumOrder(S) do
4 M0 ← GenSketch(E)
5 M← CEGIS(B, K, E, M0 )
6 if M ≠ fail then return 𝑃 ;
7 end
8 B← B + Bstep
9 K← K + Kstep

10 end

Algorithm 2: The CEGIS Part
Input: Max AST size B. Max #tuples in the MPF K.

Enumeration order E. Search sketch P0 .
Output: The memoization program P

1 E ← ∅; P← Error
2 while M ≠ fail ∧ ¬Verify(P) do
3 𝐼0 ← CounterEx(M)
4 E ← E ∪ {𝐼0 }
5 Lleaf , Lupd← SynLOF(B, E, E)
6 Minit , Mupd← SynMPF(B, K, E, E)
7 if none Lleaf, Lupd, Minit, Mupd fails then
8 M← Plug the holes above into M0
9 end

10 end
11 return M

5.2 Inductive Synthesis of the LOF and the MPF
In each CEGIS iteration, we complete the search sketch (Figure 9). Instead of applying the general
sketch method, we apply Theorem 4.3, which reduces the sketch problem to synthesizing the LOF,
MPF, and their updating functions with respect to the conditions (4)–(7). These conditions yield
two independent tasks on quantified relational program synthesis, enabling an efficient synthesis
procedure. Furthermore, we can control the efficiency of the synthesized MA by minimizing the
range of the MPF. Below, we present the synthesis of the MPF. After synthesizing the MPF, the
synthesis of its updating function (Condition (7)) is a conventional SyGuS problem. We assume an
external solverU to solve this synthesis task. The synthesis of the LOF (and its updating function)
follows a similar procedure, which we sketch at the end of this section. Below, we first present the
domain specific language (DSL) for LOF, MPF.
DSL Description. The DSL consists of constants, all input parameters, the search stage i, and
the unknown suffix (enumerated prefix, resp.) of each array soli in the solution part. Since the
LOF and the MPF admit updating functions, they must be programs represented by structural
recursions. Thus, the DSL consists of the compositions of common structural recursion operators,
such as map, filter, sum, max, min, length and suffix, etc. It also consists of primitive operators
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+,−,×, logical connectives ∧,∨,→ and the array access operator access. However, we forbid the
occurrence of the structural recursion operators and the variable i in the grammar of the function
part for higher-order operators.
Synthesis of the MPF SynMPF. SynMem synthesizes the MPF from its formalization (6). We present
the pseudo-code of this procedure in Algorithm 3. Since in each CEGIS iteration, SynMem only
aims to synthesize an MA equivalent to the exhaustive search on a set of problem instances E,
SynMem changes (6) by replacing the bound of the problem instance 𝐼 from all instances to E.
Recall that the output of the MPF is a tuple of scalars. Thus, SynMem treats synthesizing the

MPF as the joint synthesis of ℓ programs M1, . . . Mℓ , where ℓ is the number of the components in the
tuple, and Mj is the 𝑗-th component. SynMem applies two hyperparameters K and B to bound the
program space, where K upper bounds ℓ and B upper bounds the number of AST nodes for each Mi.
The synthesis of the MPF consists of the following steps.

Algorithm 3: The procedure SynMPF
Input: Max AST size B. Max #components K. Max #Trials Lim. Enum order 𝐸. Set of instances E.
Output: The expressions for the holes Minit and Mupd , or fail for the failure

1 //Step 1
2 Φs ← ∅
3 foreach 𝐼 ∈ E, 1 ≤ 𝑖 ≤ 𝑚,𝐶0 ∈ 𝐶𝐼 do
4 Collect the constraint as in (8) into Φs

5 end
6 for 𝑡 ≤ Lim ∧ rewriting not exhausted do
7 // Step 2
8 Ψs ← ∅
9 foreach Φ(𝐼 ,𝐶0, 𝑖 ) ∈ Φs do
10 𝑅 (𝑐•1 , . . . , 𝑐•𝑝 , 𝑐◦1 , . . . , 𝑐◦𝑞 ) ∈ (Check ◦ Rewrite) (𝐶0 )
11 foreach 1 ≤ 𝑗 ≤ 𝑝 do
12 Collect the constraints as in (9) into Ψs

13 end
14 end
15 // Step 3
16 M1, . . . Mℓ ← MultiSynth(B, K,Ψs )
17 if M1, . . . Mℓ does not fail then
18 M← (M1, . . . Mℓ )
19 Mupd← U(M)
20 Minit← M(1, [ ] )
21 return Minit , Mupd

22 end
23 end
24 return fail

Step 1: Inductive Instantiation. SynMem scans every instance 𝐼 = (𝛽𝐼 ,𝑉𝐼 ,𝐶𝐼 ,𝑂𝐼 ) ∈ E and
calculates the order [𝑉1, . . . ,𝑉𝑚] := J𝐸K𝐼 . Then, for every 1 ≤ i ≤ m and every 𝐶0 ∈ 𝐶𝐼 , SynMem
instantiates the condition (6) into Φ(𝐼 ,𝐶0, 𝑖) as follows, and collects this condition.

Φ(𝐼 ,𝐶0, 𝑖) :=
(
∃ ⊙𝐶0,𝑖 .∀𝑉

• over 𝑉𝐼 [1 : i − 1] .∀𝑉 ◦ over 𝑉𝐼 [i : m] .
(
𝐶0 ⇔ MPF(𝑖,𝑉 •) ⊙𝐶0,𝑖 𝑉

◦) ) (8)

Step 2: Deductive term rewriting. In this step, SynMem further applies a reduction to each collected
conditionΦ(𝐼 ,𝐶0, 𝑖) to eliminate the quantifier ⊙𝐶0,𝑖 . The reduction is accomplished via the deductive
term rewriting, which searches an equivalent expression of𝐶0. SynMem assumes the existence of a
term rewriting procedure Rewrite(C0) which can be implemented by a rewriting system suitable
for the target DSL [Brillout et al. 2011; Marché 1996; Marché and Urbain 1998; Willsey et al. 2021].
Whenever SynMem invokes Rewrite(C0), it either returns “exhausted” meaning the exhaustion of
equivalent forms, or a new equivalent expression of 𝐶0. SynMem then applies the procedure Check
to check if the rewriting result is in the form 𝑅(𝑐•1, . . . , 𝑐•𝑝 , 𝑐◦1, . . . , 𝑐◦𝑞), where each subexpression 𝑐•𝑗
only consists of𝑉𝐼 [1 : i − 1], and each 𝑐◦𝑗 only consists of𝑉𝐼 [i : m]. After obtaining such a form, we
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can reduce the constraint Φ(𝐼 ,𝐶0, 𝑖) into 𝑝 conditions Ψ(𝐼 , 𝑐•1, 𝑖), . . .Ψ(𝐼 , 𝑐•𝑝 , 𝑖), where each Ψ(𝐼 , 𝑐•𝑗 , 𝑖)
is defined as follows, eliminating the quantifier ⊙𝐶0,𝑖 :

Ψ(𝐼 , 𝑐•𝑗 , 𝑖) :=
(
∃𝑡 ∈ [1 : ℓ] .∀𝑉 • .

(
𝑐•𝑗 (𝑉

•) = M𝑡 (𝑖,𝑉 •)
))

(9)

Intuitively, if every 𝑐•𝑗 equals a component of the MPF MPF𝑡 𝑗 (𝑖,𝑉 •) for some 𝑡 𝑗 , then we can choose
⊙𝐶0,𝑖 as 𝑅(M𝑡1 (𝑖,𝑉 •), . . . , M𝑡𝑝 (𝑖,𝑉 •), 𝑐◦1, . . . , 𝑐◦𝑞) to satisfy (8). Below, we show that the reduction in
this step is sound and complete, assuming an ideal term rewriting system.

Theorem 5.1. If the MPF M satisfies Φ(𝐼 ,𝐶0, 𝑖), then there exists an equivalent expression of 𝐶0 in
the form 𝑅(𝑐•1, . . . , 𝑐•𝑝 , 𝑐◦1, . . . , 𝑐◦𝑞) as above such that M satifies (9), and vice versa.

Proof. For the “then” side, suppose (8) holds. Then, the truth value of 𝐶0 is a function on M and
𝑉 ◦. Consider the abstract syntax tree of this function, whose leaf node is either a component of M
or an atomic variable in 𝑉 ◦. Thus, this function is in the form 𝑅(𝑐•1, . . . , 𝑐•𝑝 , 𝑐◦1, . . . , 𝑐◦𝑞) as above and
M satifies (9). For the “vice versa” side, we follow the intuition above. □

Step 3: Inductive synthesis of (9). After the reduction above, the goal becomes finding ≤ K
programs to satisfy all reduced conditions in the form Ψ(𝐼 , 𝑐•, 𝑖) collecting in Step 2. SynMem
invokes the procedure MultiSynth to solve this problem. The detail of this procedure is as follows.
This procedure recursively enumerates M1, M2, . . . from the space of programs with the number

of AST nodes ≤ B. It returns if there have been more than K programs or the current programs
M1, . . . , Mℓ have satisfied all reduced conditions in the form Ψ(𝐼 , 𝑐•, 𝑖), which could be easily checked
since the domains of 𝑡 and 𝑉 • are finite for every fixed problem instance 𝐼 .

To obtain the MPF with a small range, SynMem applies a lightweight heuristic search specific to
the DSL above to synthesize each component in the MPF with a small range. Note that applying a
structural recursion operator (e.g., sum, max) in our DSL shrinks the range of the result. Thus, the
larger the synthesized program, the smaller ranges the MPF would have. Thus, SynMem follows the
heuristics that enumerates the programs (with AST size ≤ B) from large to small in the procedure
MultiSynth and outputs the first successful result.

However, the procedure above is too slow.We can prune the synthesis procedure by reformulating
the synthesis task in this step. We say that a program M∗ hits the condition Ψ(𝐼 , 𝑐•, 𝑖) if ∀𝑉 •.𝑐• (𝑉 •) =
𝑀∗ (𝑉 •). In other words, the condition Ψ(𝐼 , 𝑐•, 𝑖) will be satisfied if we add M∗ to a component of
the MPF. From this perspective, the goal of this step becomes finding ≤ K programs that hit all
conditions in the form Ψ(𝐼 , 𝑐•, 𝑖). Then, we apply the pruning based on the maximum degree bound
proposition [Bläsius et al. 2022], which is given below.

Proposition 5.2. If there are ≤ K programs M1, . . . , M≤K that satisfy all conditions, then there exists
some Mi among them that covers ≥ 1

K fraction of the conditions.

Proof. Assume that each 𝑝 ∈ L covers < 1
K fraction of the conditions, then for all𝑚 programs

𝑝1, · · · , 𝑝𝑚 ∈ L(𝑚 ≤ K), they can cover < 𝑚
K ≤ 1 fraction of the conditions at most, which

contradicts the fact that exists ≤ K programs can cover all conditions. □

By the proposition above, when enumerating the program Mi, we only consider the programs
with AST size ≤ B and hits ≥ 1

K−i+1 fraction of conditions, which greatly excludes invalid programs
and significantly speeds up the synthesis procedure.

If SynMem successfully finds ≤ K programs that satisfy all conditions with the minimized range,
then SynMem finds the MPF M by tupling these programs together. Then, SynMem invokes the
external synthesizerU to synthesize the updating function for the MPF to fill the hole Mupd, and
evaluates M(1, []) to obtain the initial value for the MPF to fill the hole Minit.
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Backtracking. However, if the synthesis in Step 3 fails to find ≤ K programs that satisfy all
conditions, then SynMem backtracks to Step 2 to search for another term rewriting result, and
starts Step 3 again. Suppose the number of failing trails in Step 3 exceeds a prescribed number Lim
or the term rewriting result is exhausted. In that case, we exit Step 2 and report failure to synthesize
the programs for the holes Minit and Mupd.
Synthesis of the optimal substructures SynLOF. Below, we present SynLOF, which synthesizes
the LOF and its updating function. Note that for CCPs and CDPs, this procedure is trivial since there
is no optimization goal. We list the synthesis result for CCPs and CDPs in the template of the search
sketch (Figure 9). For COPs, SynLOF follows almost the same procedure as SynMPF (Algorithm 3).
Hence, we only illustrate the differences.
Step 1. In this step, SynMem collects conditions for the LOF following the condition (4). (Line 4)
Step 2. In this step, SynMem rewrites the conditions collected in Step 1 into the form ⊕(𝑐◦, 𝑐•1, . . . , 𝑐•𝑝 )
(Line 10), where 𝑐◦ only depends on the unknown atomic variables 𝑉 [i : m], and every 𝑐•𝑖 only
depends on the enumerated atomic variables 𝑉 [1 : i − 1]. Furthermore, SynMem also checks
whether: (i) For 𝑖 = 1, ∀𝑥 .[] ⊕ 𝑥 = 𝑥 , and (ii) the combinator ⊕ is monotonically increasing
with respect to 𝑐◦. Checking the first condition is trivial, and the second condition is checked by
validating the following formula.

∀𝑉 ◦1 ,𝑉 ◦2 over 𝑉 [i : m] .∀𝑉 • over 𝑉 [1 : i − 1] .
(
𝑐◦ (𝑉 ◦1 ) ≤ 𝑐◦ (𝑉 ◦2 )

)
⇒ (10)(

⊕(𝑐◦ (𝑉 ◦1 ), 𝑐•1 (𝑉 •), . . . , 𝑐•𝑝 (𝑉 •)) ≤ ⊕(𝑐◦ (𝑉 ◦2 ), 𝑐•1 (𝑉 •), . . . , 𝑐•𝑝 (𝑉 •))
)

(11)

The checking is easy since for every problem instance 𝐼 , the choice of 𝑉 ◦1 ,𝑉
◦

2 and 𝑉 • is finite.
Step 3. Next, since SynMem only needs to synthesize only one LOF, we set K = 1 in this step.
In the end, we discuss the properties of our algorithm.

Soundness. Note that all steps 1–3 above are sound. Thus, given a sound and complete CEGIS
verifier and a sound external synthesizerU for synthesizing the updating function, if SynMem
successfully synthesizes the LOF, MPF, and their updating functions, then these functions satisfy
all conditions (4)–(7). Furthermore, we can plug these functions into the search sketch, deriving a
correct and efficient MA.
Completeness. As for the completeness, first note that by Theorem 5.1, Step 2 above is complete
as long as the set of equivalent forms of 𝐶0 is recursively enumerable, which means there is an
algorithm that enumerates all equivalent forms of a given expression. Such an algorithm implements
an ideal term rewriter for the procedure Rewrite(C0). Moreover, the procedure MultiSynth is
complete since it enumerates all possible combinations of programs, and the pruning by Proposition
5.2 preserves completeness. Hence, our algorithm is complete, in the sense that it never excludes
valid MPFs and LOFs, as long as (1) the CEGIS verifier is sound and complete; (2) the underlying
DSL for enumerating the program is expressive enough, (3) the external synthesizerU is complete,
and (4) the set of equivalent expressions is recursively enumerable.
We remark that finding a sound and complete external synthesizer U is easy, which simply

enumerates every program with AST size ≤ B. As for the recursively enumerable condition, we
present a case study as follows.
Case study. Consider a CP specification as follows. We disallow multiplications and divisions
across variables and allow the widely-used (i) primitive operators +, ×, max, and min; (ii) logical
connectives ≤, ≥,≠,∧,∨, and ¬; (iii) recursive operators sum, product, max, min and forall. In this
case, the constraints and the objective function are CLIA formulas over variables under a given
instance. Thus, we can encode them as an expression in the Presburger arithmetics [Presburger
1931] with uninterpreted functions (if we treat an array as an uninterpreted function [Bradley
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et al. 2006]), which is a decidable logic [Shostak 1979]. Hence, all equivalent forms are recursively
enumerable. We found that 38/40(95%) of our benchmarks fall into this case.

5.3 Optimizations
Besides the pruning in Proposition 5.2, SynMem also applies other optimizations to speed up the
synthesis procedure.
Filtering out unnecessary conditions. In SynMPF, SynMem filters out constraints 𝐶0 ∈ 𝐶𝐼 whose
variables var(𝐶0) is a subset of 𝑉 [1 : 𝑖 − 1] or 𝑉 [𝑖 : 𝑚] to simplify the specification. This does
not affect the correctness of the MPF because if var(𝐶0) ⊆ 𝑉 [1 : i − 1], then 𝐶0 is a constant after
enumerating 𝑉 [1 : i − 1]. Thus, there is no need to consider this constant constraint. On the other
hand, if var(𝐶0) ⊆ 𝑉 [i : m], then 𝐶0 is fully determined by the unknown variables 𝑉 [i : m]. We
can trivially choose ⊙𝐶0,𝑖 as 𝐶0 itself.
Pruning invalid rewriting. In Step 2 of SynMPF, consider the subexpressions 𝑐•1, . . . , 𝑐

•
𝑝 in the

rewriting result (Line 10). If there are more than K semantically different subexpressions (which
could be checked by evaluating these subexpressions over choices of 𝑉 •), then it is impossible to
use ≤ K functions to hit all conditions Ψ(𝐼 , 𝑐•1, 𝑖), . . . ,Ψ(𝐼 , 𝑐•𝑝 , 𝑖). Thus, we can safely discard this
rewriting result and try the next rewriting. The same pruning holds for the procedure SynLOF.
Lightweight monotonicity checking. In Step 2 of SynLOF, SynMem rewrites each collected
constraint in Step 1 into the form ⊕(𝑐◦, 𝑐•1, . . . , 𝑐•𝑝 ) and checks whether ⊕ is monotonically increasing
with respect to 𝑐◦. This could be achieved by scanning over 𝑉 ◦1 ,𝑉

◦
2 ,𝑉

• as in (11), which might be
costly. Thus, SynMem applies a syntactical checking in advance. Consider the abstract syntax tree
of ⊕, SynMem extracts the path from 𝑐◦ to the root node and checks if every primitive operator in
this path is monotone (e.g., +,min,max, etc.). If the lightweight monotonicity checking does not
apply, SynMem invokes the original checking procedure.

5.4 Implementation
In this part, we present the details of the implementation of our algorithm.
Hyperparameters. We first list the hyperparameters: Binit = 7, Bstep = 2,and Kinit = Kstep = 1. We
also set Lim = 10.
CEGIS. It is a highly non-trivial task to automatically verify the correctness of a MA on all problem
instances. Thus, we consider the bounded testing method [Lee and Cho 2023; Miltner et al. 2022]
that verifies the synthesized program with instances that fall into a prespecified range. In our
implementation, we consider (randomly generated) 100 instances where both arrays of length and
each input component fall into the interval [1, 5]. If scalable verification algorithms are developed
in the future, we can also use these algorithms in the CEGIS part.
Term rewriting. The rewriting is an intricate procedure whose performance depends on the
operators and syntactical structures of the given expression and the algebraic rules applied for
term rewriting. In SynMem, after applying CEGIS, the constraints and the objective function only
consists of primitive operators (e.g., +,×,max,min, etc.). Hence, SynMem applies basic algebraic
rules for the associativity, commutativity, and distributivity between primitive operators so that
SynMem can perform each rewriting step efficiently. We apply the breadth-first search for the term
rewriting procedure.
External updating function synthesizerU. We design a sound and completeU specific to the
DSL above. Since the DSL for LOF and MPF only consists of the compositions of structural recursions,
the updating function for LOF and MPF could be generated syntactically due to the restrictions
of the DSL above. For example, consider generating the updating function for sum(filter(𝜑, 𝑎)).
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Suppose we update 𝑎 by 𝑎 ++ 𝑥 , then follow the syntactic structure, we have that filter(𝜑, 𝑎 ++ 𝑥) =
filter(𝜑, 𝑎) ++ ite(𝜑 (𝑥), [𝑥], nil), sum(filter(𝜑, 𝑎 ++ 𝑥)) = sum(filter(𝜑, 𝑎)) + ite(𝜑 (𝑥), 𝑥, 0).
Thus, the updating function is orig + (ite(𝜑 (𝑥), 𝑥, 0)), where orig represents the original output
before we update 𝑎 by 𝑎 ++ 𝑥 . Note that by the DSL construction, the synthesized updating functions
are always 𝑂 (1).

6 EVALUATION
In this part, we evaluate our approach against the baseline Sketch [Solar-Lezama et al. 2006].
Dataset. We collect CPs from Leetcode [lee [n. d.]], National Olympiad in Informatics in Provinces-
Junior (a national-wide programming contest in China) [NOI [n. d.]] and previous approach [Pu
et al. 2011]. We formalize these problems into our specification form. In detail, for Leetcode, we
consider problems tagged with “dynamic programming” with the highest frequencies. Leetcode
maintains the frequency statistics for each problem to represent the probability that this problem
appears in a real-world interview. For National Olympiad in Informatics in Provinces-Junior, we
consider dynamic programming tasks (tagged by ICPC gold medal winners) in the past ten years.
For benchmarks in the previous approach [Pu et al. 2011], we collect CPs that are not included
by Leetcode and the algorithmic contest. We exclude problems that are either mistagged or not
expressible in MiniZinc. In summary, we collect the top 36 tasks from Leetcode with the highest
frequencies, 4 tasks in algorithmic contests, and 2 benchmarks from the previous approach.
Our benchmark consists of a wide range of classic dynamic programming tasks. Below we

list some representatives. For COPs and CDPs, it consists of the Knapsack problem (KP), the
longest increasing/common subsequence problem (LIS/LCS), the shortest path problem on grids,
the maximum segment/independent sum problem, and the maximal multi-marketing problem. For
CCPs, it consists of computing the Fibonacci/Catalan/binomial numbers and the counting variants
of the KP/LCS/LIS.
Baseline. We choose two baselines Sketch [Solar-Lezama et al. 2006] and FOSynth [Pu et al. 2011]
as follows.
• Sketch is a general solver for sketch problems. We compare with Sketch since SynMem
generates and completes the search sketch, and the comparison indicates the effectiveness
of our synthesis procedure (Section 5.2). For each problem in our benchmark, we feed the
generated search sketch (Figure 9) into Sketch.
• FOSynth is the state-of-the-art approach for synthesizing MAs from declarative specifications.
FOSynth is also sketch-based, but their sketch template is less expressive than ours (Figure 9).
The original implementation of FOSynth is unavailable. Hence, we acquired its reimplemented
version by contacting an author of FOSynth. This implementation includes a built-in DSL and
does not support easy change of DSL. Nevertheless, this DSL is a strict subset of the DSL used
in our approach (Section 5.2).

Procedure. We execute our implementation and the two baselines. We set the time limit as one
hour for solving an individual benchmark. We obtain all results on the laptop with the Intel(R)
Core(TM) i7-7820X CPU, 40GB RAM, and the Ubuntu 20.04 system.
Results. Overall, SynMem solves 39/42 (92.8%) of our benchmarks. On 33 benchmarks, SynMem
successfully finds the best algorithm. On the solved benchmarks, SynMem takes 2.01s on average.
More specifically, on average, SynMem takes 1.91s on inductive synthesis and 0.10s on deductive
term rewriting. Furthermore, after manually checking, we find that SynMem synthesizes the MPF
with a minimal range on all solved benchmarks. Please refer to the full version of this paper for
experimental results in detail, where we report the running time of SynMem, the time complexity
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Table 1. The Comparison Result

#Solved #Failed (runtime > 1h) #Best AvgTime
Our approach 39 3 33 2.01s

Sketch 0 42 0 –
FoSynth 8 34 8 58.31s

of the synthesized MA (which is inspected manually), and the complexity of the reference answer
for each benchmark.
The Comparison results are summarized in Table 1. For each approach, columns #Solved and

#Failed are the number of solved and failed benchmarks, respectively. Column #Best is the number
of benchmarks where the complexity of the synthesized program matches the complexity of the
reference answer. Column AvgTime is the average running time per solved task.

Compared with the baseline, note that Sketch cannot synthesize any benchmark, and FOSynth
solves 8 benchmarks with an average time of 58.31s and timeouts on 34 benchmarks. In contrast,
SynMem successfully synthesizes 39 benchmarks in a shorter average time. Thus, in our benchmark,
SynMem beats all baseline approaches.
Discussion. Sketch fails on all benchmarks for the following reasons.
• First, the search sketch is too complex. It has about 30 lines and involves recursions, global
array access, and modifications. In contrast, SynMem applies dedicated specifications for the
holes based on the definition of LOF, MPF, and their updating functions.
• The dedicated specifications yield two independent tasks in each CEGIS iteration. SynMem
solves them separately, leading to an efficient synthesis procedure. However, Sketch has to
complete all holes in the search sketch simultaneously.

Our limitations. SynMem fails on 3/40 tasks in our benchmark. This is because, on these bench-
marks, the target memoization algorithm is out of reach of our template. Consider the following
example of our failure from Leetcode 698:

Given an integer array nums and an integer K, return true if it is possible to divide
this array into K non-empty subsets whose sums are all equal.

We fail on this task since it requires us to synthesize the MPF that produces an unbounded list
rather than a tuple. However, our method only supports the MPF that outputs tuples of a fixed
dimension. Considering more forms of MPF is the future work.

On 9/37 benchmarks, SynMem synthesizes a sub-optimal MA that has a polynomial gap on the
complexity with the reference answer. This is because these benchmarks require further algorithmic
techniques other than memoization. Consider the following example from Leetcode 115:

Given two strings 𝑠 and 𝑡 (|𝑠 | = 𝑛, |𝑡 | =𝑚), return the number of distinct subsequences of 𝑠 which
equals 𝑡 .

SynMem successfully synthesizes the basic 𝑂 (𝑚𝑛2) MA. However, this problem requires an extra
data structure for range query [He et al. 2011] to optimize the MA into running time 𝑂 (𝑚𝑛).

7 RELATEDWORK

Deriving Memoization Algorithms. There have been multiple trials to derive memoization
algorithms, which could be categorized as manual and automated approaches.
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First, there are manual or semi-automated approaches. Some of them [Bird and de Moor 1997;
Bird and Gibbons 2020; de Moor 1995; Morihata et al. 2014; Mu 2008] propose a calculational
framework so that the user can manually make a step-by-step derivation of memoization algorithms.
Others of them [Acar et al. 2003; Giegerich et al. 2004; Liu and Stoller 1999; Pettorossi and Proietti
1996; Sauthoff et al. 2011] requires the user to specify complete memoization algorithms in some
DSL, including the MPF and the local objective. These approaches verify whether it is correct. In
contrast, our approach could automatically synthesize the memoization algorithm from a declarative
specification, where the user only needs to provide a high-level description.

Next, there are automated approaches [Lin et al. 2021; Pu et al. 2011] that are closely related to
ours. Below, we compare them with ours separately.
Lin et al. [2021]’s approach also considers specifications in MiniZinc style. Following a simple

deductive procedure, their approach directly transforms the constraints and the objective function
into a fold expression. It is limited as follows. First, their transformation rules support only a limited
set of operators. For example, they could not handle the forall operator to perform element-wise
operations over arrays. Next, their transformation succeeds only when there is no constraint
between any two elements in inductive data structures. In our benchmark, they are applicable to
only 6/42(14.2%) benchmarks. We do not compare with this approach in the evaluation part since
the implementation is not avaliable.

The other approach [Pu et al. 2011] is purely inductive. Similar to SynMem, it also uses a sketch
template to synthesize dynamic programming algorithms. It then applies an optimized version
of Sketch to solve the synthesis task. However, it handles dynamic programming algorithms with
a fixed number of scalar values for memoization. Thus, It is not able to handle classic CPs such as
0-1 knapsack, our running example in Section 2. By contrast, we consider a much more fruitful
template. We introduce the MPF to represent an unbounded number of values for memoization.
Under our framework, their template could be viewed as a subclass of ours where the MPF simply
outputs 1 on all subproblems. To handle the more general synthesis problem, we apply a new
algorithm mixing deductive and inductive synthesis methods. In our benchmark, 11/42(26.1%) of
our benchmarks fall into their sketch template. In our experiment (Section 6), their approach solves
8/42(19.1%) of our benchmarks.
Finally, all previous approaches do not consider CCPs. We first address CCPs via our versatile

sketch template and a dedicated approach to synthesizing the MPF.

Program Synthesis. Our approach relates to previous work in program synthesis as follows.
Recursive Program Synthesis. Many existing methods synthesize recursive programs [Farzan et al.

2022; Feser et al. 2015; Hu et al. 2021; Itzhaky et al. 2021; Kitzelmann and Schmid 2006; Kneuss
et al. 2013; Knoth et al. 2019; Lubin et al. 2020; Polikarpova and Sergey 2019]. However, as far as we
know, no approach could scale up to the synthesis of a complex memoization algorithm, which
often involves tens of lines of code.
Sketching. SynMem follows a template of search sketches and proposes a dedicated method to

synthesize all holes in the search sketch. However, the general solver Sketch for program sketching
uses a constraint-based method, completely blind to the rich information in the specification. We
have compared with Sketch in detail in Section 6.

Synthesizing specialized algorithms. Other approaches have been proposed to synthesize a special-
ized class of algorithms automatically [Farzan and Nicolet 2017, 2021; Morita et al. 2007; Smith and
Albarghouthi 2016]. However, none is concerned with deriving efficient memoization algorithms.

At a more specific level, our approach shares some similarities with the previous work [Farzan and
Nicolet 2017]. Both approaches apply the term rewriting techniques to complex relational program
synthesis tasks, reducing a relational synthesis task into a conventional SyGuS task. However,
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instead of directly applying rewriting techniques (as in [Farzan and Nicolet 2017]), SynMem first
applies a CEGIS procedure to instantiate (C1) and (D1) on concrete instances, removing operators
that are difficult to be coped with in a rewriting system, such as the summation operator Σ. In
this way, the design of the rewriting system becomes much simpler, and in many cases, we can
guarantee the success of rewriting.

Relational Program Synthesis. The synthesis conditions in Section 4 yield two relational program
synthesis tasks. However, our synthesis tasks involve too many unknown functions, thus is beyond
the reach of the previous approach [Wang et al. 2018] in this field. To handle these tasks, SynMem
applies the term rewriting method to bypass the synthesis of a large proportion of unknown
functions and reduces the quantified relational synthesis task into a conventional SyGuS task.

8 CONCLUSION
This paper addresses the automated synthesis of correct and efficient memoization algorithms from
the given declarative specification. We first make a novel reduction from synthesizing memoization
algorithms to two smaller program synthesis tasks. However, the generated synthesis tasks are still
too complex to be resolved by existing synthesizers. Thus, we propose a novel synthesis algorithm
that combines the deductive and inductive methods to solve these tasks. Our approach successfully
synthesizes 39/42 problems, outperforming the baselines.
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A DETAILS OF THE SPECIFICATION LANGUAGE
In this part, we will systematically introduce our specification of combinatorial problems. This
section is organized as follows. We will firstly introduce the syntax in detail, together with a remark
about our syntactical restrictions of specifications for pragmatic consideration and discussions for
possible extensions. Next, we introduce core concepts related to our specification. In the end, we
formulate the synthesis problem.
Generally speaking, due to the fact that many application domains of combinatorial problems

could be naturally modeled as constraint descriptions, in this paper, we will model combinatorial
problems as a system of constraints four certain set of variables, and we adopt a declarative pro-
gramming language for users to formulate a combinatorial problem in high level. The programming
language is a simplified version of MiniZinc[Nethercote et al. 2007], which is a widely-used declar-
ative language for modeling real-world problems. The syntax of our language is described in Figure
10 in detail. Note that we have presented an example of our specification in Figure 1. In general,
since a wide range of combinatorial problems involve relations over lists, to make the specification
fruitful and cover these problems, our language considers integers and arrays as basic components.
Intuitively, the integers and integer identifiers encode certain properties of an individual object, and
arrays encode a list (or set) of objects, and the expression in our language is connected by primitive
operators or recursive operators, which corresponds to encode relations and computations over
individual objects and a list of objects respectively. To present our language, we first overview the
language with its four individual modules, and then we will discuss the types and expressions of
this language in detail. Finally, we discuss our syntactical limitations.

To specify a combinatorial problem, one needs to provide four separate modules: inputs, variables,
constraints over variables, and the objection. The intuition of the four parts is illustrated as follows:

• Firstly, the input part consists of a sequence of identifier declarations, annotated with its
domain. The part consists of all ingredients needed to specify a concrete problem instance, we
will use 𝐼 to represent the set of all input identifiers.
• Next, the variable part is also made up of identifier declarations with domains. The part consists
of all components for specifying a solution, we will use V to represent all variable identifiers,
and use R to represent its corresponding domain.
• Then, the constraint part includes a set of boolean expressions. The part encodes the validity
of a solution.
• Finally, the objection part specifies the goal of this problem. Our language supports objections
including, finding the best valid solution, finding any solution, or counting the number of
solutions.

Type. In our specification, we consider ranges and arrays as basic types. A range 𝑅, formed by two
basic integer expressions 𝐵𝐸1..𝐵𝐸2, corresponds to the bounded interval [𝐵𝐸1, 𝐵𝐸2] of integers, we
also offer a syntactic sugar int that represents the value of all integers [−∞, +∞]. In our language,
we explicitly separate variables and input, a range 𝑅 with annotation var corresponds to the type
signature for a variable, and a range 𝑅 without this annotation corresponds to an input’s signature.
An array is specified by two ranges, where the first range represents the set of its indices, and the
second range represents the domain of the array’s elements.

Expression. Our specification consists of boolean expressions and integer expressions. Intuitively,
boolean expressions offer users to encode constraints, and integer expressions are used to encode
the arithmetics. Boolean expressions could have three forms as follows:

• Standard boolean constant true and false.
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• Expressions connected by primitive boolean operator 𝑃𝑟𝑖𝑚𝑂𝑝bool. We consider basic widely-
used primitive operators such as ∧,∨, ≥, ≤, <, >,= and ≠. (e.g., 𝑥 < 3, (𝑥 ≠ 3) ∧ (𝑦 > 5)).
• Expressions connected by recursive operator forall, which is intuitively used to set up
constraints over list. The forall expression is constructed by the iterating variable 𝑖𝑑 , the
iteration range 𝑅, and the iteration body 𝐸bool. It will recursively iterate the variable 𝑖𝑑 from
its range 𝑅, and specify the constraint formed by instantiating the variable 𝑖𝑑 . For example, if
we want to encode the constraint that an array a with index 1..n is monotonically increasing,
we could specify that forall(i in 1..n-1)(a[i]<a[i+1]);

Similarly, an integer expression could also have three forms as follows:
• Constant value 𝑣𝑎𝑙 and identifier 𝑖𝑑 (e.g., 3, 𝑥).
• Expressions connected by primitive integer operator 𝑃𝑟𝑖𝑚𝑂𝑝int, where consider common
operators such as +,−,×, /,max and min. (e.g., 𝑥 × 3, max{𝑥,𝑦}).
• Expressions connected by recursive operator, where we consider sum, product, max, min. These
operators are intuitively used to accumulate a primitive operator over a list. Similar to forall,
sum (product, max, min, respectively) will recursively caluculates the summation (production,
maximum, minimum, respectively) of each body term 𝐸int formed by instantiating the variable
𝑖𝑑 . For example, if we want to compute the square sum of an array a with index 1..n, we could
specify that sum(i in 1..n)(a[i]×a[i]);

Objection operator 𝑜𝑏 𝑗𝑂𝑝 . Our language offers four types of objections. If we are interested in
finding the best valid solution, we could write solve maximize or solve minimize, together with
the objective function to be maximized (or minimized). If we only want to find an arbitrary valid
solution or count the number of solutions, we could write solve satisfy, or count satisfy
respectively.
Syntatic Restrictions. Though our language has supported various widely-used primitive and
recursive operators, we do not support the recursive operator exists that checks one of a set of
constraints is satisfied. As a result, our specification restricts combinatorial problems that could be
formulated by first-order ∃∀ formulas. However, this type of formula forms a fruitful and widely-
studied subclass of first-order logic. Moreover, as presented in Section 6, our language admits a
large number of different combinatorial problems. It is left as future work to extend our algorithm
to support more primitive and recursive operators, and support a wider class of formulas.
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Specification 𝑆𝑝𝑒𝑐 → 𝐼∗𝑉 ∗𝐶∗𝑂

Input 𝐼 → 𝑇 𝐼 : 𝑖𝑑

InputType 𝑇 𝐼 → 𝑅 | array[𝑅] of 𝑅

Variable 𝑉 → 𝑇 𝑣 : 𝑣𝑎𝑟𝑖𝑑

Constraint 𝐶 → constraint 𝐸bool

Objective 𝑂 → 𝑜𝑏 𝑗𝑂𝑝 | 𝑜𝑏 𝑗𝑂𝑝 𝐸varint

VarType 𝑇 𝑣 → var 𝑅 | array[𝑅] of var 𝑅

Range 𝑅 → int | 𝐵𝐸int .. 𝐵𝐸int

VarRange 𝑅var → int | 𝐵𝐸varint .. 𝐵𝐸varint

Expression 𝐸var → 𝐸bool | 𝐸int | 𝐸varint

BoolExp 𝐸bool → true | false | 𝑃𝑟𝑖𝑚𝑂𝑝bool (𝐸var1 , · · · , 𝐸var
𝑘
) | forall(𝑖𝑑 in 𝑅) (𝐸bool)

IntExp 𝐸int → 𝐵𝐸int | 𝑅𝐸int

BaseIntExp 𝐵𝐸int → 𝑣𝑎𝑙 | 𝑖𝑑 | 𝑎𝑟𝑟𝑎𝑦𝑖𝑑 [𝐵𝐸int] | 𝑃𝑟𝑖𝑚𝑂𝑝int (𝐸int1 , · · · , 𝐸int
𝑘
)

RecursiveIntExp 𝑅𝐸int → 𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑂𝑝int (𝑟𝑖𝑑 in 𝑅var) (𝐸int)

VarIntExp 𝐸varint → 𝐵𝐸varint | 𝑅𝐸varint

BaseVarIntExp 𝐵𝐸varint → 𝐵𝐸int | 𝑣𝑎𝑟𝑖𝑑 | 𝑣𝑎𝑟𝑎𝑟𝑟𝑎𝑦𝑖𝑑 [𝐵𝐸varint] | 𝑃𝑟𝑖𝑚𝑂𝑝int (𝐸var1 , · · · , 𝐸var
𝑘
)

RecursiveVarIntExp 𝑅𝐸varint → 𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑂𝑝int (𝑟𝑖𝑑 in 𝑅var) (𝐸varint)

Fig. 10. The syntax of our specificaiton
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B PROOF
Proof for proposition 5.2. Assume that each 𝑝 ∈ L covers < 1

K fraction of the conditions,
then for all𝑚 programs 𝑝1, · · · , 𝑝𝑚 ∈ L(𝑚 ≤ K), they can cover < 𝑚

K ≤ 1 fraction of the conditions
at most, which contradicts the fact that exists ≤ K programs can cover all conditions. □

sectionDetails of Generating Search algorithms
Given the enumeration order, there is a trivial method that syntactically translates a logic

specification to a recursive function that can compute its solution. The basic idea is to enumerate
the variables in a specific order while maintaining a set 𝐶𝑛𝑜𝑤 that contains constraints involving
the variables that have not been enumerated. That is, the truth values of constraints in 𝐶𝑛𝑜𝑤 are
unable to be determined yet. Here is the framework of the function:
• Initially, C𝑛𝑜𝑤 is set to C in the specification.
• Enumerate the variables according to the given order. For each variable, we should
– Choose a possible value in the variable’s domain.
– Remove the constraints that can be determined from 𝐶𝑛𝑜𝑤 and update it.
– Go into the enumeration for the next variable recursively.
– Choose the next possible value and repeat the above steps.
• After all variables are enumerated, we get a complete assignment, and 𝐶𝑛𝑜𝑤 should be an
empty set now. Finally, we update the current optimal value.

After the translation, we expect to get an enumerative search algorithm in figure 4. We can
roughly divide the translation process into two parts: enumeration and computation. We will
illustrate these two parts in detail and answer the following questions later:
• How do we model the enumeration order?
• How do we compute the satisfiability of a constraint and the value of the objective function?
• How do we maintain 𝐶𝑛𝑜𝑤?

Algorithm 4: Enumerative Search Algorithm
1 Function Search(i, A, 𝐶𝑛𝑜𝑤):
2 if i>|V| then
3 opt := max(opt, EvalOptimum (O));
4 else
5 foreach 𝛼 ∈ 𝑅(𝑣𝑖+1) do
6 𝐶′𝑛𝑜𝑤 := Update(𝑣𝑖+1,𝛼 ,𝐶𝑛𝑜𝑤);
7 𝐴′ := 𝐴 ∪ {𝑣𝑖+1 : 𝛼};
8 sat := true;
9 foreach 𝑐 ∈ 𝐶′𝑛𝑜𝑤 do
10 if Determined(c, A’) then
11 if EvalConstraint(c) = true then Remove(𝐶𝑛𝑜𝑤 ,c);
12 else sat := false;
13 end
14 end
15 if sat = true then Search(i+1, A, 𝐶′𝑛𝑜𝑤);
16 end
17 end
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Enumeration order . A enumeration order is an order on𝑉 , the set of variables. The order produces
a list �̃� that contains all variables in𝑉 . For example, if a specification only have two integer variable
𝑎, 𝑏 and a array variable 𝑐 [𝑙 ..𝑟 ] (i.e., 𝑉 = {𝑎, 𝑏, 𝑐𝑙 · · · , 𝑐𝑟 }), then both 𝑣 = [𝑐𝑙 , · · · , 𝑐𝑟 , 𝑏, 𝑎] and
𝑣 = [𝑎, 𝑐𝑟 · · · 𝑐𝑙 , 𝑏] can be valid orders. Note that the range of indices of 𝑐 , i.e., the values of 𝑙 and 𝑟 ,
are determined once the input 𝐼 is given.
After we have enumerated a part of the variables, we need to define a state that records the

current partial assignment and the rest of the variables. We model the state as a tuple (𝑖, 𝐴), which
means we have already determined the value of variables 𝑣1, · · · , 𝑣𝑖 , and 𝐴 is a dictionary that
records assignment. In the previous example, assume 𝑙 = 2, 𝑟 = 4, 𝑣 = [𝑎, 𝑐2, 𝑐3, 𝑐4, 𝑏], and we have
enumerated 𝑎 = 4, 𝑐2 = 1, we will get 𝑖 = 2 and 𝐴 = {𝑎 : 4, 𝑐2 : 1}.

For each recursive call to the search function, we first take out 𝑣𝑖+1, which is the variable currently
enumerated. After we choose a value 𝛼 from 𝑣𝑖+1’s domain, we add 𝑣𝑖+1 : 𝛼 to the assignment 𝐴.
Then we update 𝐶𝑛𝑜𝑤 and go to the next variable by recursively calling the search function with
index 𝑖 + 1 and new assignment 𝐴.
The way we model the enumeration order is natural and is close to the normal style in which

programmers write an enumerative search algorithm. Moreover, 𝑎𝑠𝑠𝑛 and 𝑟𝑒𝑠𝑡 are important since
our synthesis of the memoization algorithm is based on them.
Computation Part. The computation for the value of a constraint or the objective function is
purely syntactical. Given a assignment 𝐴 to variables, the functions EvalConstraint(𝑐, 𝐴) and
EvalOptimum(𝑐, 𝐴) in algorithm 4 implement the evaluation of a constraint and the objective
function respectively. The semantics of these functions are in figure 11.
𝐸 ⇓𝐴𝑒 𝑃 denotes that the expression 𝐸 is able to be evaluated to value 𝑃 under the assignment

𝐴. The rule E_RecursiveOp is important, which translates the operator to a fold-style recursive
function. For example, if the recursive operator is 𝑠𝑢𝑚, then the InitValue and CombineOp are 0 and
+ respectively.

E_PrimOp
𝐸𝑖 ⇓𝐴𝑒 𝑃𝑖 (𝑖 = 1, · · · , 𝑘)

𝑃𝑟𝑖𝑚𝑂𝑝 (𝐸1, · · · , 𝐸𝑘 ) ⇓𝐴𝑒 𝑃𝑟𝑖𝑚𝑂𝑝 (𝑃1, · · · , 𝑃𝑘 )

E_Range
𝑅 → 𝐸1 ..𝐸2 𝐸1 ⇓𝐴𝑒 𝑃1 𝐸2 ⇓𝐴𝑒 𝑃2

𝑅 ⇓𝐴𝑒 𝑃1 ..𝑃2

E_RecursiveOp
𝑅 ⇓𝐴𝑒 𝑙 ..𝑟 𝐸 ⇓𝐴𝑒 𝑃 𝐼𝑛𝑖𝑡𝑉𝑎𝑙𝑢𝑒 (𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑂𝑝) = 𝑐 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑂𝑝 (𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑂𝑝) = ◦
𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑂𝑝 (𝑟𝑖𝑑 in 𝑅) (𝐸) ⇓𝑒 let fun 𝑓 (𝑖) = (𝑖 > 𝑟?𝑐 : ( [𝑖/𝑖𝑑]𝑃) ◦ 𝑓 (𝑖 + 1)) in 𝑓 (𝑙)

E_VarId

𝑣𝑎𝑟𝑖𝑑 ⇓𝐴𝑒 𝑔𝑒𝑡 (𝐴, 𝑣𝑎𝑟𝑖𝑑)

E_Id

𝑖𝑑 ⇓𝐴𝑒 𝑔𝑒𝑡 (𝐼 , 𝑖𝑑)

E_VarArray
𝐸 ⇓𝐴𝑒 𝑃

𝑣𝑎𝑟𝑎𝑟𝑟𝑎𝑦𝑖𝑑 [𝐸] ⇓𝐴𝑒 𝑔𝑒𝑡 (𝐴, 𝑣𝑎𝑟𝑎𝑟𝑟𝑎𝑦𝑖𝑑 [𝑃])

E_Array
𝐸 ⇓𝐴𝑒 𝑃

𝑎𝑟𝑟𝑎𝑦𝑖𝑑 [𝐸] ⇓𝐴𝑒 𝑔𝑒𝑡 (𝐼 , 𝑖𝑑 [𝑃])

E_Const

𝑣𝑎𝑙 ⇓𝐴𝑒 𝑣𝑎𝑙

Fig. 11. The rules of EvalConstraint() and EvalOptimum()

Maintaining𝐶𝑛𝑜𝑤 . The set𝐶𝑛𝑜𝑤 contains constraints whose satisfiability cannot yet be confirmed.
The purpose of maintaining this set is to prune out unnecessary enumerations: If a constraint can
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be determined to be false under a partial assignment, the enumerated algorithm will try the next
possible value of the current variable, rather than go into the next variable. The enumerative search
algorithm is based on the following two ideas to maintain 𝐶𝑛𝑜𝑤 :

1. For a constraint in 𝐶𝑛𝑜𝑤 , it may only be relevant to a subset of variables. If all variables in this
subset have been determined, the truth value of the constraint can be computed.
– If it is true, it will be removed from 𝐶𝑛𝑜𝑤 .
– Otherwise, the algorithm will stop considering the next variable.

2. For a constraint with form forall(𝑖𝑑 in 𝑅) (𝐸bool), if all variables in 𝑅 are determined, then
the constraint can be broken into |𝑅 | subconstraints.

For idea 1, the function Determined() in algorithm 4 implements it. Determined(c,assn)
means the satisfibility of constraint 𝑐 can be determined provided the partial assignment 𝐴. The
detailed semantics of the function are in figure 12. 𝐸 ≺𝑐 𝐴 denotes that the value of expres-
sion 𝐸 can be determined only given the assignment 𝐴. Note the rules C_RangeDetermined and
C_RangeUndetermined, both of whom are about RecursiveOp. Intuitively, The First one says that if
the lower and upper bounds of the range 𝑅 can be evaluated to 𝑙 and 𝑟 , then the algorithm adds an
item 𝑟𝑖𝑑 : 𝑙 ..𝑟 to Ω. 𝑂𝑚𝑒𝑔𝑎 is a map to record the recursive identifiers’ ranges that are determined,
which might be useful to determine which items in a var array are relevant to the constraint later.
To be specific, when we meet a 𝑣𝑎𝑟𝑎𝑟𝑟𝑎𝑦𝑖𝑑 [𝐸] and all of the recursive identifiers occurred in 𝐸 have
a determined range, we are able to compute the set of items that is relevant. On the other hand,
if some of the recursive identifiers are undetermined, we consider all items of the array relevant
to constraint. The rules C_VarArrayRidCompleted and C_VarArrayRidIncompleted describe these
features formally.

C_PrimOp
Ω;𝐸𝑖 ≺𝑐 𝐴𝑖 (𝑖 = 1, · · · , 𝑘)

Ω; 𝑃𝑟𝑖𝑚𝑂𝑝 (𝐸1, · · · , 𝐸𝑘 ) ≺𝑐
𝑘⋃
𝑖=1

𝐴𝑖

C_RangeDetermined
Ω;𝑅 ≺𝑐 𝐴𝑅 𝑅 ⇓𝐴𝑅

𝑒 𝑙 ..𝑟 (Ω, 𝑖𝑑 : 𝑙 ..𝑟 );𝐸 ≺𝑐 𝐴𝐸

Ω;𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑂𝑝 (𝑟𝑖𝑑 in 𝑅) (𝐸) ≺𝑐 𝐴𝑅 ∪𝐴𝐸

C_RangeUndetermined
Ω;𝑅 ≺𝑐 𝐴𝑅 Ω;𝐸 ≺𝑐 𝐴𝐸

Ω;𝑅𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑂𝑝 (𝑟𝑖𝑑 in 𝑅) (𝐸) ≺𝑐 𝐴𝑅 ∪𝐴𝐸

C_VarId

Ω; 𝑣𝑎𝑟𝑖𝑑 ≺𝑐 {𝑣𝑎𝑟𝑖𝑑}

C_Id

Ω; 𝑖𝑑 ≺𝑐 ∅

C_ArrayId
Ω;𝐸 ≺𝑐 𝐴

Ω;𝑎𝑟𝑟𝑎𝑦𝑖𝑑 [𝐸] ≺𝑐 𝐴

C_VarArrayRidCompleted
𝐴𝑙𝑙𝑂 𝑓 𝑅𝑖𝑑 (𝐸) ⊆ Ω 𝐾 = {𝑥 | 𝐸 ⇓𝐴∪𝐴Ω

𝑒 𝑥,∀𝐴Ω is valid under Ω}
Ω; 𝑣𝑎𝑟𝑎𝑟𝑟𝑎𝑦𝑖𝑑 [𝐸] ≺𝑐 𝐴 ∪ {𝑣𝑎𝑟𝑎𝑟𝑟𝑎𝑦𝑖𝑑 [𝑎] | 𝑎 ∈ 𝐾}

C_VarArrayRidIncompleted
𝐴𝑙𝑙𝑂 𝑓 𝑅𝑖𝑑 (𝐸) ⊊ Ω

Ω; 𝑣𝑎𝑟𝑎𝑟𝑟𝑎𝑦𝑖𝑑 [𝐸] ≺𝑐 𝐴 ∪ {𝑣𝑎𝑟𝑎𝑟𝑟𝑎𝑦𝑖𝑑 [𝑎] | 𝑎 ∈ index range}

Fig. 12. The rules of Determined()

Therefore, the enumerative search algorithm can advance the computation of a constraint as
soon as all relevant variables have been assigned.
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For idea 2, the algorithm decomposes forall-form constraints when the range is determined,
which is done during the Update() procedure in algorithm 4. The updating rule is described in
figure 13.

Decompose
𝑅 ≺𝑐 𝐴 𝑅 ⇓𝐴𝑒 𝑙 ..𝑟 ⟨forall(𝑖𝑑 in 𝑅) (𝐸bool)⟩ ∈ 𝐶𝑛𝑜𝑤

∀𝑖 ∈ 𝑙 ..𝑟 , [𝑖/𝑖𝑑]𝐸 ∈ 𝐶′𝑛𝑜𝑤

Fig. 13. The rule of decomposing forall-form constraints
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Table 2. The Details of Our Synthesis Result

Benchmark Runtime (s) Deductive
Time(s)

Inductive
Time(s) Complexity Best Match Best?

1049 fail - - - 𝑂 (𝑛3) %

1143 4.128 4.045 0.083 𝑂 (𝑛6) 𝑂 (𝑛2) %

115 0.248 0.234 0.015 𝑂 (𝑚𝑛2) 𝑂 (𝑚𝑛) %

118 0.481 0.454 0.027 𝑂 (𝑛2) 𝑂 (𝑛2) "

120 0.699 0.659 0.041 𝑂 (𝑛3) 𝑂 (𝑛3) "

121 6.205 5.937 0.267 𝑂 (𝑛) 𝑂 (𝑛) "

122 0.72 0.679 0.041 𝑂 (𝑛) 𝑂 (𝑛) "

123 4.107 4.03 0.076 𝑂 (𝑛) 𝑂 (𝑛) "

152 fail - - - 𝑂 (𝑛) %

198 0.902 0.86 0.042 𝑂 (𝑛) 𝑂 (𝑛) "

213 2.799 2.576 0.223 𝑂 (𝑛) 𝑂 (𝑛) "

22 0.535 0.494 0.041 𝑂 (𝑛2) 𝑂 (𝑛2) "

279 0.564 0.538 0.026 𝑂 (𝑛3) 𝑂 (𝑛3) "

300 0.298 0.284 0.015 𝑂 (𝑛4) 𝑂 (𝑛2) %

309 2.582 2.363 0.22 𝑂 (𝑛) 𝑂 (𝑛) "

32 8.643 8.466 0.178 𝑂 (𝑛2) 𝑂 (𝑛) "

322 0.590 0.563 0.027 𝑂 (𝑛𝐶) 𝑂 (𝑛𝐶) "

354 0.117 0.102 0.014 𝑂 (𝑛4) 𝑂 (𝑛2) %

392 0.316 0.301 0.015 𝑂 (𝑛3) 𝑂 (𝑛3) "

416 0.528 0.501 0.027 𝑂 (𝑛𝑆) 𝑂 (𝑛𝑆) "

45 2.286 2.089 0.197 𝑂 (𝑛4) 𝑂 (𝑛2) %

474 3.936 3.858 0.077 𝑂 (𝑛𝐶1𝐶2) 𝑂 (𝑛𝐶1𝐶2) "

494 0.538 0.511 0.027 𝑂 (𝑛𝑆) 𝑂 (𝑛𝑆) "

509 2.200 2.011 0.188 𝑂 (𝑛) 𝑂 (𝑛) "

516 4.276 4.187 0.089 𝑂 (𝑛6) 𝑂 (𝑛2) "

53 4.949 4.818 0.130 𝑂 (𝑛) 𝑂 (𝑛) "

55 0.311 0.297 0.014 𝑂 (𝑛) 𝑂 (𝑛) "

62 0.584 0.558 0.027 𝑂 (𝑛2) 𝑂 (𝑛2) "

646 0.153 0.139 0.014 𝑂 (𝑛4) 𝑂 (𝑛2) "

673 0.210 0.196 0.014 𝑂 (𝑛4) 𝑂 (𝑛2) "

698 fail - - - 𝑂 (2𝑘 ) %

70 2.144 1.962 0.182 𝑂 (𝑛) 𝑂 (𝑛) "

714 6.444 6.171 0.273 𝑂 (𝑛) 𝑂 (𝑛) "

746 2.550 2.337 0.214 𝑂 (𝑛) 𝑂 (𝑛) "

873 2.797 2.574 0.223 𝑂 (𝑛5) 𝑂 (𝑛2) %

96 0.841 0.801 0.040 𝑂 (𝑛2) 𝑂 (𝑛2) "

Comp1 0.556 0.530 0.026 𝑂 (𝑛𝐵) 𝑂 (𝑛𝐵) "

Comp2 0.448 0.422 0.027 𝑂 (𝑛𝑆) 𝑂 (𝑛𝑆) "

Comp3 0.552 0.526 0.026 𝑂 (𝑛𝑚𝑆) 𝑂 (𝑛𝑚𝑆) "

Comp4 0.160 0.146 0.014 𝑂 (𝑛3) 𝑂 (𝑛3) "

assem 3.053 2.816 0.236 𝑂 (𝑛) 𝑂 (𝑛) "

mas 4.953 4.827 0.126 𝑂 (𝑛) 𝑂 (𝑛) "
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