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Abstract

In this paper, we prove that it is W[2]-hard to approximate k-SETCOVER within any constant
ratio. Our proof is built upon the recently developed threshold graph composition technique.
We propose a strong notion of threshold graphs and use a new composition method to prove
this result. Our technique could also be applied to rule out polynomial time o

(
log n

log log n

)
ratio

approximation algorithms for the non-parameterized k-SETCOVER problem with k as small as

O
(

log n
log log n

)3
, assuming W[1] ̸= FPT. We highlight that our proof does not depend on the

well-known PCP theorem, and only involves simple combinatorial objects.

1 Introduction

In the k-SETCOVER problem, we are given a bipartite graph G = (S ∪̇U, E) and an integer k, and
the goal is to decide whether there exist k vertices in S such that each node in the universe set U is
a neighbor of one of the k vertices. In the classic complexity regime, this problem is known to be
NP-complete [Kar72]. Thus assuming P ̸= NP, no algorithm can solve k-SETCOVER in polynomial
time. To circumvent this intractability, many previous works have focused on efficient approxima-
tion algorithms for k-SETCOVER. It admits a simple greedy algorithm with approximation ratio
(ln n− ln ln n+Θ(1)) [Chv79,Joh74,Lov75,Sla97,Ste74]. On the opposite side, the hardness of ap-
proximation of k-SETCOVER has also been intensively studied [AMS06, DS14, Fei98, LY94, RS97].
The state-of-the-art result by Dinur and Stenur [DS14] shows that approximating k-SETCOVER

within an (1 − ε) · ln n factor for any ε > 0 is NP-hard.

To obtain a more fine-grained comprehension of NP-hard problems, it is natural to consider
parameterization. In the parameterized complexity regime, people wonder whether there is any
f (k) · |G|O(1) time algorithm (FPT algorithm) that can solve the k-SETCOVER problem, where f
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could be any computable function (e.g., k! or kkk
). As was shown in [DF95], k-SETCOVER is the

canonical W[2]-complete problem, which means that, unless W[2] = FPT, k-SETCOVER does not
admit any FPT algorithm. In parallel with the classical complexity regime, it is natural to ask:

Assuming W[2] ̸= FPT, does k-SETCOVER admit good FPT approximation algorithms?

Note that since k-SETCOVER is a W[2]-complete problem, the question above is (almost) equivalent
to asking whether there is an FPT self-reduction from exact k-SETCOVER to its gap version1.

In recent years, the parameterized inapproximability of k-SETCOVER has been established
under various assumptions stronger than W[2] ̸= FPT. Chen and Lin [CL19] proved that it is
W[1]-hard to approximate k-SETCOVER within any constant ratio. Chalermsook et al. [CCK+17]
showed that assuming Gap-ETH, k-SETCOVER cannot be approximated within a (log n)O(1/k) factor
in no(k) time. Using the Distributed PCP framework [ARW17], Karthik, Laekhanukit and Manurangsi
[KLM19] ruled out (log n)1/poly(k) ratio nk−ε-time approximation algorithms for k-SETCOVER un-
der SETH. They also proved similar inapproximability results under k-SUM Hypothesis, ETH and
W[1] ̸= FPT, respectively. The hardness of approximation factors of these results were improved
to (log n/ log log n)1/k in [Lin19] by combining k-SETCOVER instances with some gap-gadgets.
Karthik and Navon [KN21] gave a simple construction of these gap-gadgets based on error cor-
recting codes and named this technique Threshold Graph Composition.

In contrast to the success of proving inapproximability of k-SETCOVER under stronger as-
sumptions, the FPT inapproximability of k-SETCOVER under W[2] ̸= FPT remained completely
open [KLM19, KN21, FKLM20]. Below we summarize the difficulties encountered in the previous
approaches.

Barriers of previous approaches. First, neither of the two pioneering works [CCK+17, CL19] are
applicable to this setting. In detail, the approach proposed in [CL19] requires the reduction’s
starting point to admit a product structure (e.g. k-CLIQUE) in order to perform gap amplifica-
tion. However, under the assumption W[2] ̸= FPT, the starting point is the k-SETCOVER itself,
whose product structure is notoriously hard to understand [KZ96]. On the other hand, the method
of [CCK+17] highly depends on the inherent gap in the Gap-ETH assumption, thus could not be
adapted to our setting.

Second, there are indeed some other advanced techniques, namely, the Distributed PCP Frame-
work and the Threshold Graph Composition, which have been successfully used to prove the in-
approximability of k-SETCOVER under W[1] ̸= FPT, ETH, and SETH. However, under a weaker
assumption W[2] ̸= FPT, even constant FPT inapproximability of k-SETCOVER is difficult to reach
using these two techniques. Generally speaking, in order to create a constant gap for k-SETCOVER

under W[2] ̸= FPT, both of these methods need to first establish the W[2]-hardness of k-SETCOVER

with a small universe set. Nevertheless, establishing such a hardness result is highly non-trivial,
and we believe it to be unrealizable [JP17].

Below, we illustrate their technique barriers in detail, respectively.

• The work [Lin19] proposes a gap-producing self-reduction for k-SETCOVER, i.e., it constructs
a reduction from k-SETCOVER to c-gap k-SETCOVER. However, to create the constant gap c,

1For any c > 1, on input a k-SETCOVER instance (G, k), the goal of c-gap k-SETCOVER is to distinguish between the
cases where G has k-size solution and the cases where G has no ck-size solution.
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the running time of this reduction will be |U|(ck)k
, where |U| represents the universe size for

the input k-SETCOVER instance. Hence, to apply this method under our setting W[2] ̸= FPT,
we need to first prove that k-SETCOVER remains W[2]-hard even when |U| = nO(1/(ck)k).

• The approach of [KLM19] is more complicated. It starts with a (1 − 1/k)-gap k-MAXCOVER2

instance which has q right variables and right alphabet ΣU . It then uses the product method
to amplify its gap to (1 − 1/k)t with the price of increasing q to qt and ΣU to Σt

U . Finally
it transfers a (1 − 1/k)t-gap k-Max-Cover instance with alphabet Σt

U and variable qt to a
(1 − 1/k)−t/k-gap k-SETCOVER instance with size at least qt · k|ΣU |t . It is not hard to see that
to obtain a constant gap for k-SETCOVER, t should be at least Ω(k2), which means that q
should be at most nO(1/k2). However, as far as we known, there is no FPT-reduction from
k-SETCOVER to (1 − 1/k)-gap k-MAXCOVER with q at most nO(1/k2). We note that there is
a simple reduction from k-SETCOVER to k-MAXCOVER with q = |U| and ΣU = [k]. Such
a reduction is far from satisfactory because the k-MAXCOVER instance it produces does not
have a (1 − 1/k)-gap and it requires the W[2]-hardness of k-SETCOVER with |U| = nO(1/k2).

Note that establishing such a hardness result is equivalent to making an FPT self-reduction
that “compresses” the k-SETCOVER problem, i.e., the reduction starts with a k-SETCOVER instance
with universe size n and results in another equivalent instance of k-SETCOVER with significantly
smaller universe size no(1). Unfortunately, there is no known FPT-reduction that achieves this, and
we list two partial results below, which suggest that such a reduction might be unrealizable.

• First, we prove that (See Lemma 14 in the Appendix), unless W[2] = W[1], there is no FPT
self-reduction for k-SETCOVER that can compress the size of universe set to f (k) · log n for
any computable function f .

• In addition, research from the lower bound of kernelization [JP17] shows that: unless NP ⊆
coNP/poly and the polynomial hierarchy PH collapses, for every ε > 0, there is no polynomial
self-reduction for non-parameterized k-SETCOVER that compress the size of instance to n2−ε.
This also suggests that the corresponding parameterized version of k-SETCOVER may also
be hard to compress.

Our results. We bypass these technique barriers by coming up with a strong version of the thresh-
old graph and a new composition method that can create a constant gap for k-SETCOVER instance
with a large universe set. Using this technique, we give the first inapproximability result for k-
SETCOVER under W[2] ̸= FPT. In summary, the main contribution of our paper is:

Theorem 1. Assuming W[2] ̸= FPT, there is no FPT algorithm which can approximate k-SETCOVER

within any constant ratio.

2In the k-MAXCOVER problem, we are given a bipartite graph I = (V, U, E) with |V| = k and |U| = q, two alphabet
ΣV and ΣU and constraints Ce ⊆ ΣV × ΣU for each e ∈ E. The goal is to find assignments σV : V → ΣV and σU : U →
ΣU to maximize the number of u ∈ U whose edges’s constraints are all satisfied (Such vertex u are called covered by
assignments σV and σU). For δ ∈ (0, 1), the δ-gap k-MAXCOVER is to distinguish between the cases where all vertices in
U can be covered and the cases where at most δ-fraction of U can be covered.
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As a further application, our technique can also be used to rule out polynomial time o
(

log n
log log n

)
ratio approximation algorithms for k-SETCOVER with k as small as O(log3 n) under W[1] ̸= FPT.

Theorem 2. Assuming W[1] ̸= FPT, there is no polynomial time algorithm which can approximate k-

SETCOVER within o
(

log n
log log n

)
ratio, even if k is as small as O

(
log n

log log n

)3
.

We emphasize that our Theorem 2 is non-trivial since it overcomes limitations of previous
works in two aspects.

• Limitations of results in parameterized complexity. First, all the previous results [CL19, CCK+17,
KLM19, Lin19] on the parameterized inapproximability of k-SETCOVER only ruled out
o
(
(log n)1/k) approximation ratios, which was further pointed out as a barrier [KN21]. How-

ever, the folklore polynomial time greedy algorithm could approximate k-SETCOVER with
approximation factor Θ(log n). There is a huge gap between them. Our Theorem 2 is the first
one to obtain inapproximability result for k-SETCOVER with a small solution size that can
bypass the (log n)1/k barrier.

• Limitations of the PCP theorem. Second, the major technique used to rule out polynomial ap-
proximation algorithm for k-SETCOVER is the well-celebrated PCP theorem [Fei98, AMS06].
However, as pointed out in [CL19], results of this type are unlikely provable using the classic
PCP machinery since the PCP theorem always produces k-SETCOVER instances with a large
solution size Ω(n). However, our Theorem 2 could rule out polynoimal time approxima-

tion with a small solution size O
(

log n
log log n

)3
. Furthermore, assuming the mild assumption

NP ⊈ TIME(2poly log n), k-SETCOVER with solution size logO(1) n is not even NP-hard, thus
we could not derive hardness for k-SETCOVER with poly log n solution size from gap SAT
(or the PCP theorem).

Finally, as a suggestion to future work, we remark that: if one could improve the polynomial
time lower bound in Theorem 2 to nk−o(1) under SETH, then the ratio o

(
log n

log log n

)
is tight. The rea-

son is that: there is a simple algorithm with running time nk−Ω(1) that approximates k-SETCOVER

with approximation factor O
(

log |U|
log k

)
. Under our setting, we have that k = logΘ(1) n, hence, the

algorithm could approximate k-SETCOVER with factor O
(

log |U|
log k

)
= O

(
log n

log log n

)
in nk−Ω(1) time.

The algorithm simply modifies the well-known greedy algorithm for k-SETCOVER, and is illus-
trated detailedly as follows.

Details of the algorithm. Fix some integer 2 ≤ T < k, our algorithm repeatedly picks k − T
vertices into the final solution in O(nk−T+1) time, such that these vertices cover the largest
fraction of remaining elements in the universe. Repeat the procedure above for r times with
r to be determined, we could obtain a solution of size r · (k − T). We analyze the correctness
and the approximation ratio of our algorithm below.

Analysis. In each repetition, we will find k − T vertices that cover at least 1 − T/k fraction of
remaining elements in the universe. Thus after r repetitions, the number of the uncovered
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elements will be no more than (T/k)r · |U|. To ensure that we have covered all elements
in the universe, we need to choose the number of repetitions r = log |U|

log k−log T by solving the
inequality for uncovered elements (T/k)r · |U| < 1.

Note that proving tight lower bounds and upper bounds for approximation algorithms of k-
SETCOVER for different choices of k and approximation ratios is still a big challenge. We would
like to mention that our proof might shed a new light on the study of this problem since it is
an elementary proof, which circumvents the complex PCP machinery and only involves simple
combinatorial objects such as error correcting codes.

1.1 Our Techniques

Our main technique is the threshold graph composition, which was first used in [Lin18], and has been
applied to create gaps for many parameterized problems [CL19, Lin19, BBE+21, KN21]. At a very
high level, this method first constructs a graph with some threshold properties and then combines
this graph with the input instance to produce a gap instance of the desired problem.

In this paper, we introduce a strong variant of the threshold graph and propose a new way to
compose this threshold graph with the original k-SETCOVER instance. Below we firstly overview
the proof in the work [Lin19], and then illustrate our proof for Theorem 1 briefly. Theorem 2 could
be analogously proved by simply choosing another combination of parameters.

The Original Proof in [Lin19]. The threshold graph appeared in [Lin19] are bipartite graphs T =
(A∪̇B, ET) with the following properties:

(i) A = A1∪̇A2∪̇ · · · ∪̇Ak.

(ii) B = B1∪̇B2∪̇ · · · ∪̇Bm.

(iii) For any a1 ∈ A1, . . . , ak ∈ Ak and i ∈ [m], a1, . . . , ak have a common neighbor in Bi.

(iv) For any X ⊆ A and b1 ∈ B1, . . . , bm ∈ Bm, if every bi has k + 1 neighbors in X, then |X| > h.

Given a set cover instance Γ = (S∪̇U, E) and a threshold graph T = (A∪̇B, ET) with A =
A1∪̇A2, . . . , Ak, B = B1∪̇, · · · , ∪̇Bm and |Ai| = |S|, the reduction in [Lin19] treats each Ai as a copy
of S and creates a set cover instance Γi = (A, UBi , Ei) for every i ∈ [m] so that in order to cover UBi ,
one has to pick ℓ notes {a1, . . . , aℓ} from A satisfying the following two conditions:

(a) a1, . . . , aℓ cover U in the instance Γ,

(b) a1, . . . , aℓ have a common neighbor in Bi in the threshold graph T.

After that, it takes the union of all Γi = (A, UBi , Ei) for i ∈ [m]. It is not hard to see that if the input
instance Γ has a solution of size k, then there exist a1 ∈ A1, . . . , ak ∈ Ak which cover all vertex in
U. By (a), (b) and the property (iii), these vertices a1, . . . , ak also cover UBi for all i ∈ [m].

On the other hand, if the input instance Γ has no solution of size k, below we show that every
solution X of the output instance must have a size larger than h. To cover the part Γi in the output
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instance, any solution X has to incorporate k + 1 vertices in to cover U to satisfy condition (a).
Furthermore, these vertices share a common neighbor bi ∈ Bi to satisfy condition (b). This means
that we could find a vertex bi ∈ Bi with k + 1 neighbors in our solution X. Since this works for
every i ∈ [m], we conclude by the threshold property (iv) that |X| > h.

The reduction above fails to prove constant inapproximability of k-SETCOVER under W[2] ̸=
FPT because to get a constant hardness factor, one needs to set h = c · k for some constant c.
Unfortunately, the current construction of threshold graph has |Bi| = hk. Thus the reduction has
running time at least |U|hk

, which is not FPT when |U| = Ω(n). Previous reductions [Lin19,
KLM19] use the fact that under stronger hypotheses, k-SETCOVER remains W[1]-hard even when
|U| = kO(1) log n. However, unless W[2] = W[1], one cannot prove k-SETCOVER remains W[2]-
hard when |U| = kO(1) log n (See Lemma 14 in the Appendix). Jansen and Pieterse [JP17] proved
that unless NP ⊆ coNP/poly, there is no O(n2−ϵ)-size compression for general non-parameterized
k-SETCOVER, which suggests it might not be possible to prove k-SETCOVER with small |U| is W[2]-
hard.

Our Reduction. Below we illustrate our reduction at a high level. We firstly define a stronger
version of the threshold graph by replacing (iv) with a property reminiscent of the soundness
condition of multi-assignment PCP [AMS06].

(iv’) For any X ⊆ A and I ⊆ [m] with |I| ≥ εm, if for every i ∈ I, bi has k + 1 neighbors in X, then
|X| > h.

It turns out that such strong threshold graphs can be constructed using Error Correcting Codes,
which was proposed by Karthik and Navon [KN21].

Then we define a new threshold graph composition which replaces Γi by Γ′
i = (A ∪ Bi, Uc ×

Bc
i , E′

i). By choosing the edge set E′
i carefully, we can guarantee that in order to cover Uc × Bc

i , one
has to

(a) either pick c + 1 vertices from Bi,

(b) or pick a1, . . . , aℓ from A and bi ∈ Bi such that

(b.1) a1, . . . , aℓ cover U in the instance Γ,

(b.2) bi is a common neighbor of a1, . . . , aℓ in the threshold graph.

Suppose the input instance Γ has a solution of size k. Since each Ai is a copy of the set S in
Γ, let a1 ∈ A1, . . . , ak ∈ Ak be the vertices that can cover U. By the property of threshold graph,
a1, . . . , ak have a common neighbor bi ∈ Bi for every i ∈ [m]. The vertices a1, . . . , ak and b1, . . . , bm
together can cover Uc × Bc

i for all i ∈ [m].

On the other hand, if Γ has no k-size solution, then in order to cover every Uc × Bc
i , one should

pick either (1 − ε)(c + 1)m vertices in B or pick X ⊆ A and ϵm vertices from B such that each
vertex has k + 1 neighbors in X. By the property (iv’), the later implies that |X| > h. Thus, either
(1 − ε)(c + 1)m vertices in B or h vertices in A must be picked in this case. To obtain a constant
gap, we assign m/k weight to every vertex in A and let h = k2, m = k5. It is routine to check that
the reduction is FPT.
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We remark that |Bi| can be sufficiently small in the threshold graph construction. Assuming
W[1] ̸= FPT, |U| is kO(1) log n and thus we can set c = log n

k log log n . Since k is arbitrarily small with

respect to n, by choosing appropriate parameters, we can rule out o
(

log n
log log n

)
factor polynomial

time algorithms for the non-parameterized k-SETCOVER problem.

2 Preliminaries

In this section, we formally define the k-SETCOVER problem and related hypothesis.

For every graph G, we use V(G) and E(G) to denote its vertex set and edge set. For every
vertex v ∈ V(G), let N(v) ⊆ V(G) be the set of neighbors of v in G. For every vertex set C ⊆ V(G),
define N(C) =

⋃
v∈C N(v).

The (weighted variant of) SETCOVER is defined as follows. An instance Γ consists of a bipartite
graph G = (S, U, E) and a weight function w : S → N+. The goal is to find a set C ⊆ S such that
N(C) = U and the total weight ∑s∈C w(s) is minimal. We use OPT(Γ) to represent the minimum
total weight. For every χ ∈ N, we say an instance Γ is χ-weighted if the number of different weights
is upper bounded by χ, i.e. |{w(v) : v ∈ S}| ≤ χ. The unweighted SETCOVER is equivalent to
1-weighted SETCOVER.

Given a constant χ, by duplicating every vertex according to its weight, any χ-weighted SET-
COVER instance Γ can be reduced to an unweighted (1-weighted) SETCOVER instance Γ′ in time
(|Γ| · max{w(s) : s ∈ S})O(1), while preserving the optimum.

Lemma 3 (Lemma 16 in [CL19]). For any constant χ, there is a reduction which, given any χ-weighted
SETCOVER instance Γ = (S, U, E, w), outputs an unweighted SETCOVER instance Γ′ = (S′, U′, E′) in
O((|Γ|max{w(s) : s ∈ S})O(1)) time, such that for every k < |Γ|, OPT(Γ) ≤ k if and only if OPT(Γ′) ≤
k.

In parameterized complexity theory, we consider problems L ⊆ {0, 1}∗ with a computable
function κ : {0, 1}∗ → N which returns a parameter κ(x) ∈ N for every input instance x ∈ {0, 1}∗.
Since we mainly focus on graph related problems, it is convenient to treat each input as a pair
x = (G, k) with G a graph and k an integer and let κ(x) = κ(G, k) = k. A parameterized problem
(L, κ) is fixed parameter tractable (FPT) if it has an algorithm which for every input x ∈ {0, 1}∗
decides if x is a yes-instance of L in f (κ(x)) · |x|O(1)-time for some computable function f . An
FPT-reduction from problem (L, κ) to (L′, κ′) is an algorithm A which on every input x, outputs an
instance x′ in f (κ(x)) · |x|O(1)-time such that x is a yes-instance if and only if x′ is a yes-instance
and κ′(x′) = g(κ(x)) for some computable function f and g. In the parameterized version of
SETCOVER, i.e., k-SETCOVER, we are given an instance Γ of unweighted SETCOVER and an integer
k as its parameter(i.e. κ(Γ, k) = k). The goal is to decide if OPT(Γ) ≤ k. The c-gap k-SETCOVER

problem is to distinguish between the cases OPT(Γ) ≤ k and OPT(Γ) > ck. Another fundamental
parameterized problem is the k-CLIQUE problem, whose goal is to decide whether an input graph
G contains a clique of size k.

At the end, we present the hypothesis W[2] ̸= FPT and W[1] ̸= FPT on which our results
based. For simplicity, we omit the definition of W-Hierarchy and only use an equivalent form.
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Hypothesis 4 (W[2] ̸= FPT). k-SETCOVER cannot be solved in f (k) · nO(1) time for any computable
function f .

Hypothesis 5 (W[1] ̸= FPT). k-CLIQUE cannot be solved in f (k) · nO(1) time for any computable function
f .

Analogously to the definition of NP-hardness, we say a problem is W[1]-hard or W[2]-hard if
there is an FPT-reduction from k-CLIQUE or k-SETCOVER to it, respectively. Similarly, a problem
is in W[1] or W[2] if there is an FPT-reduction from it to k-CLIQUE or k-SETCOVER, respectively.
Note that W[1] ̸= FPT implies W[2] ̸= FPT, because there is an FPT reduction which transforms
a k-CLIQUE instance to an unweighted k-SETCOVER instance Γ with small universe size |U| =
k3 · log |Γ| [KLM19, Lin19]. Thus, in our paper, the starting point of our reduction for Theorem 2 is
an unweighted k-SETCOVER with small universe size rather than a k-CLIQUE instance. Formally,
the reduction [KLM19, Lin19] is stated below.

Lemma 6. There is a polynomial time reduction which, given an n-vertex graph G = (V, E) and a param-
eter k, outputs a k-SETCOVER instance Γ = (S, U, E) where |U| = O(k3 log n) and |S| = |E| = O(n2),
such that:

• if G contains a k-clique, then OPT(Γ) ≤ (k
2);

• if G contains no k-clique, then OPT(Γ) > (k
2).

3 Strong Threshold Graphs

In this part, we introduce a combinatorial object called strong threshold graph, which plays an
important role in our proof. Intuitively, we compose strong threshold graphs with the original
k-SETCOVER instance to produce gaps. Our threshold graph construction comes from [KN21].
However, we take a new analysis to this construction and establish the stronger threshold property
on this type of graphs. Since the construction involves error correcting codes. For the sake of
self-containedness, we first put the definition of error correcting codes here. Then, we formally
define the strong threshold property used in this work, and finally, we use a new analysis to the
construction in [KN21] and prove (See Theorem 10) that it is a strong threshold graph.

Definition 7 (Error Correcting Codes). Let Σ be a finite set, a subset C : Σr → Σm is an error correcting
code with message length r, block length m and relative distance δ if for every x, y ∈ Σr, ∆(C(x), C(y)) ≥ δ.
We denote then ∆(C) = δ. Here ∆(x, y) = 1

m |{i ∈ [m] : xi ̸= yi}|.

We sometimes abuse notations a little and treat an error correcting code as its image, i.e.,
C ⊆ Σm and |C| = Σr.

Throughout our paper, we use Reed-Solomon Code (RS code). Let Σ be a field and r ≤ m ≤
|Σ|. Fix m elements f1, . . . , fm ∈ Σ. The RS code CRS : Σr → Σm is defined as

∀(a1, . . . , ar) ∈ Σr, CRS(a1, a2, . . . , ar) = ( ∑
i∈[r]

ai f i−1
1 , ∑

i∈[r]
ai f i−1

2 , . . . , ∑
i∈[r]

ai f i−1
m ).
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Lemma 8 (RS code [RS60]). Given input and output length r, m and alphabet Σ such that |Σ| ≥ m, the
RS code CRS : Σr → Σm satisfies ∆(CRS) ≥ 1 − r

m .

Below we describe the properties of threshold graphs we need. Note that in Section 1.1 we
have compared our threshold property with those in previous work [Lin19].

Definition 9 ((n, k, t, m, h, ε)-threshold graph). Given n, k, t, m, h ∈ N+ and ε ∈ (0, 1), a bipartite
graph T = (A∪̇B, E) is an (n, k, t, m, h, ε)-threshold graph if it has the following properties:

• A consists of k disjoint parts A = A1∪̇A2∪̇ . . . ∪̇Ak with |Ai| = n for all i ∈ [k].

• B consists of m disjoint parts B = B1∪̇B2∪̇ . . . ∪̇Bm with |Bi| = t for all i ∈ [m].

• For any a1 ∈ A1, a2 ∈ A2 . . . , ak ∈ Ak and every j ∈ [m], there is a vertex b ∈ Bj which is a common
neighbor of {a1, . . . , ak}.

• For any X ⊆ A and b1 ∈ B1, . . . , bm ∈ Bm, if there are εm indices j such that |N(bj) ∩ X| ≥ k + 1,
then |X| > h .

At the end, we analyze the construction in [KN21] and prove that it is a strong threshold
graph. Formally, we have that:

Theorem 10. Given an error correcting code C : Σr → Σm with distance δ, then for any k ∈ N and ε ∈
(0, 1), a (|Σ|r, k, |Σ|k, m,

√
2·ε

1−δ , ε)-threshold graph G can be constructed in time O((k + m) · |Σ|O(r+k)).

Proof. The construction is as follows.

• For every i ∈ [k], Ai = {C(x) : x ∈ Σr}.

• For every j ∈ [m], Bj = Σk.

• A vertex a ∈ Ai and a vertex b ∈ Bj are linked if and only if (a)j = (b)i, where (a)j means the
j-th element of vector a.

Fix any a1 ∈ A1, a2 ∈ A2, . . . , ak ∈ Ak and an index j ∈ [m]. Let b = ((a1)j, (a2)j, . . . , (ak)j). It’s easy
to see b ∈ Bj is a common neighbor of a1, a2, . . . , ak.

Fix any b1 ∈ B1, b2 ∈ B2, . . . , bm ∈ Bm and X ⊆ A. Suppose there are εm indices j such that
|N(bj) ∩ X| ≥ k + 1. Since A is divided into k parts, for each such index j, there must be an index
i ∈ [k] such that N(bj) contains at least two vertices in X ∩ Ai. Let x, x′ ∈ X ∩ Ai be two different
vertices, then (x)j = (x′)j = (bj)i. Define

Lx,x′ = {i ∈ [m] : (x)i = (x′)i},

we have
∑

x ̸=x′∈X
|Lx,x′ | ≥ εm.

However, according to the distance of codewords, for every x, x′ ∈ X, x ̸= x′,

|Lx,x′ | ≤ (1 − δ)m.

This leads to (|X|
2 )(1 − δ) ≥ ε, i.e., |X| >

√
2ε

1−δ .
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4 Proof of the Main Theorem

Theorem 11. There is a reduction which, given an unweighted k-SETCOVER instance Γ = (S, U, E), an
(n, k, t, m, h, ε)-threshold graph T = (A∪̇B, ET) where n = |S| and m ≤ nO(1), and an integer c ∈ N+,
outputs a new 2-weighted k-SETCOVER instance Γ′ = (S′, U′, E′, w) with the following properties:

• (Completeness) If OPT(Γ) ≤ k, then OPT(Γ′) ≤ 2m.

• (Soundness) If OPT(Γ) > k, then OPT(Γ′) > min{mh/k, (1 − ε)mc}.

• The reduction runs in |Γ|O(1) · (|U|t)O(c) time.

Proof. Let A = A1∪̇A2∪̇ . . . ∪̇Ak and B = B1∪̇B2∪̇ . . . ∪̇Bm. For every i ∈ [k], we treat each Ai as a
copy of [n]. Let s : [n] → S be a bijection. The new instance Γ′ = (S′, U′, E′) and w is defined as
follows.

• S′ = A∪̇B.

• U′ = {(u1, . . . , uc, b1, . . . , bc, i) : (u1, . . . , uc) ∈ Uc, (b1, . . . , bc) ∈ Bc
i , i ∈ [m]}.

• For every a ∈ A, w(a) = m/k. For every b ∈ B, w(b) = 1.

• For every a ∈ A and u⃗ = (u1, . . . , uc, b1, . . . , bc, i) ∈ U′, we link a and u⃗ if there exists j ∈ [c]
such that (a, bj) ∈ ET and (s(a), uj) ∈ E, where s(a) is the matching vertex of a in S.

• For every b ∈ B and u⃗ = (u1, . . . , uc, b1, . . . , bc, i) ∈ U′, we link b and u⃗ if b ∈ Bi and b ̸= bj for
all j ∈ [c].

It is easy to see the reduction can be done in ((nk + tm) · (|U|t)c · m)O(1) = |Γ|O(1) · (|U|t)O(c)

time.

For the completeness case, let the solution in Γ be a1, . . . , ak ∈ S. By the property of threshold
graph, a1 ∈ A1, . . . , ak ∈ Ak have common neighbors b1 ∈ B1, . . . , bm ∈ Bm in T.

We claim that {a1, . . . , ak, b1, . . . , bm} ⊆ S′, which is of weight 2m, is a valid solution of Γ′.

For every u⃗ = (u1, . . . , uc, b̂1, . . . , b̂c, i) ∈ U′ with (b̂1, . . . , b̂c) ∈ Bc
i for some i ∈ [m],

• If bi does not appear in {b̂1, . . . , b̂c}, then according to our construction, (bi, u⃗) ∈ E′.

• Otherwise suppose bi = b̂j for some j ∈ [c]. Since {a1, . . . , ak} is a valid covering of U in Γ,
there exists j∗ ∈ [k] such that (s(aj∗), uj) ∈ E. Note that (aj∗ , b̂j) ∈ ET, we have (aj∗ , u⃗) ∈ E′

by definition.

For the soundness case, consider a solution {a1, . . . , aq, b1, . . . , br} with ai ∈ A and bj ∈ B, we
first prove that, for every i ∈ [m],

• Either {b1, . . . , br} contains at least c + 1 vertices in Bi,

10



• Or there exists j ∈ [r], such that bj ∈ Bi is a common neighbor of at least k + 1 vertices in
{a1, . . . , aq} in the threshold graph T.

Suppose it is not the first case, i.e., the set {b1, . . . , br} contains no more than c vertices in Bi,
for simplicity of notation let those vertices be b̂1, . . . , b̂c (we allow duplication so that the number
of vertices can always be c).

Consider the set Ub̂1,...,b̂c
= {(u1, . . . , uc, b̂1, . . . , b̂c, i) ∈ U′ : (u1, . . . , uc) ∈ Uc}. According to

our assumption, {b1, . . . , br} does not cover Ub̂1,...,b̂c
. So Ub̂1,...,b̂c

can only be covered by {a1, . . . , aq}.
Suppose by contradiction that for every j ∈ [c], b̂j has at most k neighbors in {a1, . . . , aq}, i.e. the set
Nb̂j

= {aℓ : ℓ ∈ [q], aℓ ∈ N(b̂j)} has size at most k. Since OPT(Γ) > k, there must be some ûj ∈ U

not covered by Nb̂j
. Hence for every j ∈ [c] and ℓ ∈ [q], either (aℓ, b̂j) /∈ ET or (s(aℓ), ûj) /∈ E, i.e.

the vertex u⃗ = (û1, . . . , ûc, b̂1, . . . , b̂c, i) is not covered by {a1, . . . , aq}.

If there are εm indices i ∈ [m] such that in the threshold graph T, there exists bj ∈ Bi that
has k + 1 neighbors in {a1, . . . , aq}, then by the property of threshold graph, q > h. It follows
that w({a1, . . . , aq}) > h · m/k. Otherwise, there are (1 − ε)m indices i ∈ [m] such that {b1, . . . , br}
contains c + 1 vertices in Bi, we have w({b1, . . . , br}) > (1 − ε)cm.

Now we are ready to prove the W[2]-hardness of constant gap k-SETCOVER.

Theorem 12 (Restated version of Theorem 1). Assuming W[2] ̸= FPT, there is no deterministic FPT
algorithm which can approximate k-SETCOVER within any constant ratio.

Proof. For any constant c0 > 0, we give an FPT reduction from a k-SETCOVER instance Γ =
(S, U, E) to a c0-gap k′-SETCOVER instance as follows. Note that without loss of generality, we
could assume that our reduction only holds for large enough κ(x) and |x|, since we could apply
enumerative search to solve small instances. We assume that k ≥ 2c0, |S| ≥ k5k and |U| ≤ |S|. Let

• n = |S|,

• r = k,

• m = k5,

• c = 4c0,

• |Σ| = n1/k ≥ m,

• ε = 1/2.

By Lemma 8, the Reed-Solomon code CRS : Σr → Σm has distance at least δ = 1 − r
m = 1 − 1

k4 .

Then by Theorem 10, we can construct a (|Σ|r = n, k, |Σ|k = n, m = k5,
√

2·ε
1−δ = k2, ε = 1

2 )-

threshold graph in O((k + m) · |Σ|O(r+k)) = nO(1) time. After that, we apply Theorem 11 to get a
2-weighted gap SETCOVER instance in time (nO(1)) · (n2)O(c) = nO(c), where in the yes case, the
optimal solution has size at most 2m, and in the no case, the optimal solution has size greater
than min{m · k2/k, (1 − ε) · mc} = 2c0m. Finally, we apply Lemma 3 to remove the weights in
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(
nO(c) · m

k

)O(1)
= nO(c) time. The whole reduction runs in time polynomial in n, and the new

parameter 2m = 2k5 is a function of k. Thus our reduction is an FPT reduction.

Next we prove the hardness of approximating non-parameterized k-SETCOVER without using
the PCP theorem.

Theorem 13 (Restated version of Theorem 2). Assuming W[1] ̸= FPT, there is no polynomial time
algorithm which can approximate non-parameterized k-SETCOVER within o

(
log n

log log n

)
ratio, even if k is as

small as O
(

log n
log log n

)3
.

Proof. Suppose by contradiction there is an algorithm which can approximate non-parameterized
k-SETCOVER within a ratio less than log n

g(n) log log n for some g(n) = ω(1) in nO(1) time, then we give an
algorithm which can solve k-CLIQUE in FPT time. W.l.o.g. assume g is a non-decreasing function.

Given a k-CLIQUE instance G = (V, E), we first reduce it to a k′-SETCOVER instance Γ =
(S, U, E) where |U| = O((k′)2 log |S|) by Lemma 6. We will use k for k′ in the following for clarity.
W.l.o.g. assume n = |S| is large enough that

min
{

g(n),
log n

log log n

}
≥ max{2k, 100},

otherwise we use brute-force to solve Γ, and thus solve G in FPT time. Let

• r = log n
log log n ,

• m =
(

log n
log log n

)3
,

• c = log n
k log log n ,

• |Σ| =
(

log n
log log n

)3
,

• ε = 1/2.

By Lemma 8, the Reed-Solomon code CRS : Σr → Σm has distance at least δ = 1 − r
m = 1 −(

log log n
log n

)2
. Then by Theorem 10, we can construct a (|Σ|r = nO(1), k, |Σ|k =

(
log n

log log n

)3k
, m =

k5,
√

2·ε
1−δ = log n

log log n , ε = 1
2 )-threshold graph in O((k + m) · |Σ|O(r+k)) = nO(1) time. After that, we

apply Theorem 11 to get a 2-weighted gap SETCOVER instance in time nO(1) ·
(

k2 log n ·
(

log n
log log n

)3k
)c

=

nO(1), where in the yes case, the optimal solution has size at most 2m = 2
(

log n
log log n

)3
and in the no

case, the optimal solution has size greater than min{m · log n
log log n /k, (1 − ε) · mc} = log n

2k log log n . We

apply Lemma 3 to remove the weights in nO(1) time. Finally, as log n
2k log log n ≥ log n

g(n) log log n , the pre-
sumed approximation algorithm for non-parameterized k-SETCOVER can distinguish between the
two cases in nO(1) time, and thus solve k-CLIQUE in FPT time, contradicting W[1] ̸= FPT.
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5 Conclusion

In this paper, we settle the W[2]-hardness of approximating k-SETCOVER with constant approxi-
mation ratio. Our result could also be applied to rule out polynomial algorithm approximating

non-parameterized k-SETCOVER within ratio o
(

log n
log log n

)
, with k as small as O

(
log n

log log n

)3
, assum-

ing W[1] ̸= FPT.

As further research questions, it is interesting to consider W[2]-hardness of approximating
k-SETCOVER beyond constant ratio.

Question 1. Is it W[2]-hard to approximate k-SETCOVER with super-constant ratio?

Our technique fails to answer this question, because given approximation ratio c, our reduc-
tion runs in time Ω(|U|c), which will result in a non-FPT reduction if c is not constant.

It is well-known that the textbook greedy algorithm approximates k-SETCOVER with ratio
O(log n), and this is also the best approximation algorithm. However, assuming W[1] ̸= FPT, the
state-of-the-art result [Lin19] rules out FPT algorithms approximating k-SETCOVER within approx-

imation ratio
(

log n
log log n

)1/k
, and there is still a gap. Could we further improve this inapproxima-

bility, or does there exist FPT algorithms approximating k-SETCOVER with better approximation
ratio? This leads to the following question:

Question 2. Is there any FPT algorithm approximating k-SETCOVER within approximation ratio o(log n)?

Finally, we ask whether the lower bound of our Theorem 2 could be improved under stronger
assumptions (e.g., SETH), which leads to the following question:

Question 3. For k = (log n)O(1), assuming SETH, is there any algorithm with running time nk−o(1)

approximating k-SETCOVER with approximation ratio o
(

log n
log log n

)
?
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Appendix

We prove that, for any computable function f , k-SETCOVER with universe set size at most f (k) log n
is in W[1]. We show a reduction from such a k-SETCOVER instance to a k′-CLIQUE instance. The
idea is as follows. For each element in U, it should be covered by some set from one of the k
groups. We divide U into f (k) · log k parts of size log n/ log k, and use a variable in [k]log n/ log k for
each part to encode which groups the sets covering those log n/ log k elements are from. For each
group of sets, we also use a variable to indicate which set is picked from this group. We add con-
straints between the two types of variables to check whether the alleged set is eligible for covering
corresponding elements, and transform this 2CSP instance to a CLIQUE instance in the canonical
way.

Lemma 14. There is an FPT-reduction which, given an instance Γ = (S, U, E) of k-SETCOVER with
|U| = f (k) · log n, outputs a graph G and an integer k′ = k + f (k) · log k, such that

• if OPT(Γ) = k, then G contains a k′-clique,

• if OPT(Γ) < k, then G contains no k′-clique.

Proof. Let h = f (k) · log k. We divide U into h groups of size log n/ log k and index every element
in U by a pair (i, j) where i ∈ [h], j ∈ [log n/ log k]. We define a graph G as follows.

• V(G) = V1 ∪ V2, · · · , Vk ∪ W1 ∪ W2, · · · , Wh.

15



• For every i ∈ [k], Vi is a copy of S.

• For every i ∈ [h], Wi = [k]log n/ log k.

• Make each Vi and Wj an independent set. Add edges between different Vi and Vj, and be-
tween different Wi and Wj.

• For every v ∈ Vi and w ∈ Wj, add an edge between them if and only if for all ℓ ∈ [log n/ log k],
w[ℓ] = i implies v can cover the (j, ℓ)-th element in U.

The running time of this reduction is at most O(kh · klog n/ log k · |G| · |U|) = k log k · f (k) · nO(1).

Suppose Γ has a size-k solution v1, . . . , vk ∈ S. We define w1 ∈ W1, . . . , wh ∈ Wh as follows.
For every j ∈ [h] and ℓ ∈ [log n/ log k], let wj[ℓ] = i such that vi can cover the (j, ℓ)-th element in
U. By our construction, each wj is adjacent to all v1, . . . , vk. Thus, we obtain a k′-clique in graph G.

Suppose G contains a clique X of size k′. By our construction, |X ∩ Vi| = |X ∩ Wj| = 1 for
every i ∈ [k], j ∈ [h]. Let vi ∈ |X ∩ Vi|, wj ∈ |X ∩ Wj| be the vertices in the clique. For every j ∈ [h]
and ℓ ∈ [log n/ log k], let i = wj[ℓ], then by the existence of an edge between vi and wj, the (j, ℓ)-th
element in U can be covered by vi. Thus, U can be covered by k sets v1, . . . , vk.
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